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Preface

The language networks book provides insights into the principles of modeling and analyzing
structural properties of language – manly in its written form, hence text. Book guidelines the basic
principles of text preprocessing, covering the very initial steps needed for any natural language
processing task. Further, the book examines the possibilities of representing text in a complex
networks framework. The second part overviews the application of language networks as one of a
data science disciplines. It covers important data science topics for the processing of the big textual
data from extracting the most salient structural parts of documents, across differentiation between
text genres to predicting the speeding of the information through social media. Finally, the last part
of the book is tasked with formal modeling of the linguistic subsystems in a multilayer complex
networks formalism, which allows systematic study of language across all of its subsystems.

The first part of the book studies the general principles of language networks construction and
analysis. It covers language network construction types. Specifically, it analyzes the effects of
constructing directed vs. undirected, weighted vs. unweighted network from lemmatized (stemmed)
or non-lemmatized texts with stopwords included or excluded. The effects of text randomization are
studied enabling better insights into characteristics of language networks compared to their shuffled
counterparts. Some preliminary experiments reveal the possibilities of the differentiation of the
structural properties of networks constructed from different text types and in different languages
like Croatian, English, and Italian. Next, some initial insights into the characterization of syllabic
networks are presented. The analysis of motifs of the linguistic networks reveals the typical building
blocks of the structure of networks of the literature in the Croatian language. Finally, the first part
of the book concludes with the LaNCoA a Python Toolkit for the construction and analysis of
language networks implementing the majority of the findings presented in this part of the book.

The second part of the book is dedicated to the applications of language networks. The language
networks enable the extraction of the most salient words in texts – keywords and extraction of
the domain knowledge-context studied on the content of Wikipedia entries. The applicative part
of language networks includes the differentiation between different text types and polarization of
tweets, as well. Finally, the possibilities of predicting the future content of tweets solely from the
structural properties of the complex language networks are presented.



The third part of the book presents the formal model of language networks. Multilayered
language network represents a comprehensive framework based on the multilayered graphs that
can model various aspects of language like subsystems at the different level in the hierarchy, the
construction principles, the language types and others. Multilayer language model serves as a
unified formal model for the representation of language within the complex networks theory.

This book represents a collection of scientific results of the members of LangNet (Language
Networks) group at Department of Informatics, the University of Rijeka from 2013. to 2017 1.
The papers gathered in this collection have been initially published in different scientific jour-
nals and presented at scientific conferences. The complete LangNet bibliography is available at
langnet.uniri.hr pages.

We are truly and sincerely thankful to many researchers that influenced this research. Foremost,
Slobodan Beliga was the driving force of many research initiatives. Zoran Levnajić, Mihaela
Matešić, Benedikt Perak and Tajana Ban-Kirigin initiated the constant dialog on linguist’s, mathe-
matician’s and physicist’s perspective on language networks which led to fruitful ideas. Finally,
thanks go to all students that collaborated on LangNet research Domagoj Margan, Tanja Miličić,
Neven Matas, Edvin Močibob, Kristina Ban, Hana Rizvić, Ivan Ivakić, Tomislav Bukić and Sabina
Šišović. Foremost we are grateful to our families who patiently supported our work.

Finally, we express our gratitude to reviewers who contributed to the quality of content in this
book. Their valuable insights improved the structure and the organization of the content.

Finally, we hope that readers of this book will gain holistic and comprehensive insights into the
principles of construction and analysis of language complex networks, it’s formal representation
model and possible applications for different text processing tasks.

Sanda Martinčić-Ipšić and Ana Meštrović

1This work has been supported by the University of Rijeka under the LangNet project (13.13.2.2.07).
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1. Preliminary Report on the Structure of
Croatian Linguistic Co-occurrence Networks

1.1 Abstract

In this Chapter, we investigate the structure of Croatian linguistic co-occurrence networks. We
examine the change of network structure properties by systematically varying the co-occurrence
window sizes, the corpus sizes and removing stopwords. In a co-occurrence window of size n we
establish a link between the current word and n−1 subsequent words. The results point out that
the increase of the co-occurrence window size is followed by a decrease in diameter, average path
shortening and expectedly condensing the average clustering coefficient. The same can be noticed
for the removal of the stopwords. Finally, since the size of texts is reflected in the network proper-
ties, our results suggest that the corpus influence can be reduced by increasing the co-occurrence
window size.

1.2 Introduction

The complex networks sub-discipline tasked with the analysis of language has been recently
associated with the term of linguistic’s network analysis. Text can be represented as a complex
network of linked words: each individual word is a node and interactions amongst words are
links. The interactions can be derived at different levels: structure, semantics, dependencies, etc.
Commonly they rise from a simple criterion such as co-occurrence of two words within a sentence,
or text.

The pioneering construction of linguistic networks was in 2001, when Ferrer i Cancho and
Solé [9] showed that the co-occurrence network from the British National Corpus has a small
average path length, a high clustering coefficient, and a two-regime power law degree distribution;
the network exhibits small-world and scale-free properties. Drogotsev and Mendes [7] used complex
networks to study language as a self-organizing network of interacting words. The co-occurrence
networks were constructed by linking two neighboring words within a sentence. Masucci and
Rodgers [11] investigated the network topology of Orwell’s ‘1984’ focusing on the local properties:
nearest neighbors and the clustering coefficient by linking the neighboring words. Pardo et al. [12]
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used the complex network’s clustering coefficient as the measure of text summarization performance.
The original and summarized texts were preprocessed with stopwords’ removal and lemmatization .
For the network construction they used reversed window orientation which caused the word to be
connected to the previous words with forwarding links’ directions. Caldiera et al. [4] examined the
structure of the texts of individual authors. After stopword elimination and lemmatization each
sentence was added to the network as a clique 1. Biemann et al. [2] compared networks where two
neighboring words were linked with networks where all the words co-occurring in the sentence were
linked. From the network properties they derived a quantifiable measure of generative language
(n-gram artificial language) regarding the semantics of natural language. Borge-Holthoefer [3]
produced a methodological and formal overview of complex networks from the language research
perspective. Liu and Cong [10] used complex network parameters for the classification (hierarchical
clustering) of 14 languages, where Croatian was amongst 12 Slavic.

In this Chapter we propose the construction of the linguistic co-occurrence networks from
Croatian texts. We examine the change of a network’s structure properties by systematically varying
the co-occurrence window sizes, the corpus sizes and stopwords’ removal. In a co-occurrence
window of size n we establish a link between the current word and n−1 subsequent words.

In Section 1.3 we define network properties needed to accurately analyze small-world and
scale-free characteristics of co-occurrence networks, such as diameter, average path length and
average clustering coefficient. In Section 1.4 we present the construction of 30 co-occurrence
networks. The network measurements are in Section 1.5. In the final Section, we elaborate on the
obtained results and make conclusions regarding future work.

1.3 The Network Structure Analysis
In the network N is the number of nodes and K is the number of links . In weighted networks every
link connecting two nodes has an associated weight w ∈ R+

0 . The co-occurrence window mn of size
n is defined as n subsequent words from a text. The number of network components is denoted by
ω .

For every two connected nodes i and j the number of links lying on the shortest path between
them is denoted as di j, therefore the average distance of a node i from all other nodes is:

di =
∑ j di j

N
. (1.1)

And the average path length between every two nodes i, j is:

L = ∑
i, j

di j

N(N−1)
. (1.2)

The maximum distance results in the network diameter :

D = maxidi. (1.3)

For weighted networks the clustering coefficient of a node i is defined as the geometric average
of the subgraph link weights:

ci =
1

ki(ki−1) ∑
i j
(ŵi jŵikŵ jk)

1/3, (1.4)

where the link weights ŵi j are normalized by the maximum weight in the network ŵi j =
wi j/max(w). The value of ci is assigned to 0 if ki < 2.

1A clique in an undirected network is a subset of its nodes such that every two nodes in the subset are linked.



1.4 Network Construction 15

The average clustering of a network is defined as the average value of the clustering coefficients
of all nodes in a network:

C =
1
N ∑

i
ci. (1.5)

If ω > 1, C is computed for the largest network component.
An important property of complex networks is degree distribution . For many real networks

this distribution follows power law [13], which is defined as:

P(k)∼ k−α . (1.6)

1.4 Network Construction
1.4.1 Data

For the construction and analysis of co-occurrence networks, we used a corpus of literature,
containing 10 books written in or translated into the Croatian language. For the experiments we
divided the corpus into three parts: C1 - one book, C2 - four books and C3 - ten books, where C1
⊆ C2 ⊆ C3, as shown in Table 1.1.

Stopwords are a list of the most common, short function words which do not carry strong
semantic properties, but are needed for the syntax of language (pronouns, prepositions, conjunctions,
abbreviations, interjections,...). The Croatian stopwords list contains 2,923 words in their inflected
forms. Examples of stopwords are: ‘is’, ‘but’, ‘and’, ‘which’, ‘on’, ‘any’, ‘some’.

Corpus part C1 C2 C3
# of words 28671 252328 895547
# of unique words 9159 40221 91018
# of stopwords 371 588 629

Table 1.1: The statistics for the corpus of 10 books.

1.4.2 The Construction of Co-occurrence Networks
We constructed 30 different co-occurrence networks, weighted and directed, from the corpus in
Table 1. Words are nodes, and they are linked if they are in the same sentence according to the
size of the co-occurrence window. The co-occurrence window mn of size n is defined as a set of n
subsequent words from a text. Within a window the links are established between the first word
and n−1 subsequent words. During the construction we considered the sentence boundary as the
window boundary too. Three steps in the network construction for a sentence of 5 words, and the
co-occurrence window size n = 2..5 is shown in Figure 1.1.

The weight of the link between two nodes is proportional to the overall co-occurrence frequen-
cies of the corresponding words within a co-occurrence window. For all three parts of the corpus
C1, C2, C3, we examined the properties of co-occurrence networks constructed with various mn,
n = 2,3,4,5,6. Besides 5 window sizes for co-occurrence networks, we also differentiate upon the
criterion of the inclusion or exclusion of stopwords.

Network construction and analysis was implemented with the Python programming language
using the NetworkX software package developed for the creation, manipulation, and study of the
structure, dynamics, and functions of complex networks [8]. Numerical analysis and visualization
of power law distributions was made with the ‘powerlaw’ software package [1] for the Python
programming language.



16 Chapter 1. Preliminary Report on the Structure of Linguistic Networks

Figure 1.1: An illustration of 3 steps in a network construction with a co-occurrence window mn of
sizes n = 2...5. w1...w5 are words within a sentence.

1.5 Results

m2 m3 m4 m5 m6

Nsw 9530 9530 9530 9530 9530
N 9159 9159 9159 9159 9159
Ksw 22305 43894 64161 83192 101104
K 14627 28494 41472 53596 64840
Lsw 3.59 2.92 2.70 2.55 2.45
L 6.42 4.73 4.12 3.79 3.58
Dsw 16 9 7 6 6
D 26 15 11 10 8
Csw 0.15 0.55 0.63 0.66 0.68
C 0.01 0.47 0.56 0.60 0.64
ωsw 5 5 5 5 5
ω 15 15 15 15 15

Table 1.2: Networks constructed from C1. Measures noted with the sw subscript are results with
stopwords included.

The comparisons of the properties for networks differing in the co-occurrence window size are
shown in Tables 1.2, 1.3 and 1.4. Clearly, the results show that the networks constructed with larger
co-occurrence window emphasize small-world properties. More precisely, the values of the average
path length and network diameter decrease proportionally to the increase of co-occurrence window
size. Likewise, the average clustering coefficient becomes larger in accordance with the increment
of mn.

In Tables 1.2, 1.3 and 1.4 we also compare the characteristics of networks with the removal of
the stopwords . In addition to the proportional strengthening of small-world properties with the
increase of mn, the same phenomenon appears with the inclusion of stopwords in the process of
building the network. All of the networks show smaller network distance measures and greater
clustering coefficient with the stopwords included.

Furthermore, stopwords have an impact on the average clustering coefficient in a way that
increasing the corpus size with the stopwords included will result in a higher clustering coefficient,
while increasing the corpus size with the stopwords excluded will result in a lower clustering
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m2 m3 m4 m5 m6

Nsw 40809 40809 40809 40809 40809
N 40221 40221 40221 40221 40221
Ksw 156857 307633 445812 572463 688484
K 108449 207437 296233 375535 446547
Lsw 3.25 2.81 2.64 2.52 2.43
L 4.69 3.86 3.54 3.35 3.23
Dsw 18 12 8 7 6
D 24 14 11 9 9
Csw 0.25 0.58 0.65 0.68 0.70
C 0.02 0.43 0.52 0.56 0.59
ωsw 9 9 9 9 9
ω 33 33 33 33 33

Table 1.3: Networks constructed from C2. Measures noted with the sw subscript are results with
stopwords included.

m2 m3 m4 m5 m6

Nsw 91647 91647 91647 91647 91647
N 91018 91018 91018 91018 91018
Ksw 464029 911277 1315888 1680848 2009187
K 360653 684008 963078 1202869 1409599
Lsw 3.10 2.74 2.58 2.47 2.38
L 4.17 3.55 3.30 3.16 3.08
Dsw 23 13 9 7 7
D 34 19 14 11 9
Csw 0.32 0.61 0.67 0.69 0.71
C 0.03 0.42 0.51 0.55 0.58
ωsw 22 22 22 22 22
ω 64 64 64 64 64

Table 1.4: Networks constructed from C3. Measures noted with the sw subscript are results with
stopwords included.

coefficient (Figure 1.2). This may be explained by the high impact of stopwords as the main hubs.
Table 1.5 shows that stopwords are much stronger hubs than other hubs which we gain with the
exclusion of stopwords.

Numerical results of power law distribution analysis indicate the presence of the power law
distribution. The visualization of power law distribution for 4 networks created from C3 is shown
in Figure 1.3. We found that networks constructed with included stopwords generally represent
a good power law fit starting from the optimal xmin. The numeric values of α for the power law
distributions shown in Figure 1.2 are respectively: 2.167, 2.172, 2.339, 2.040. The networks with
stopwords included have a better power law fit.
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SW included SW excluded
m2 m6 m2 m6

word degree word degree word degree word degree
i (and) 29762 i (and) 67890 kad (when) 4260 kad (when) 14921
je (is) 13924 je (is) 53484 rekao (said) 2036 rekao (said) 5755
u (in) 13116 se (self) 42563 sad (now) 1494 jedan (one) 5142

se (self) 11033 u (in) 41188 reče (said) 1319 sad (now) 5062
na (on) 9084 da (yes, that) 35632 jedan (one) 1318 ljudi (people) 4836
da (yes) 8103 na (on) 29417 ima (has) 1281 dana (day) 4679
a (but) 6637 su (are) 22366 ljudi (people) 1264 ima (has) 4406

kao (as) 5452 a (but) 21919 dobro (good) 1119 reče (said) 4178
od (from) 4773 kao (as) 18141 dana (day) 998 dobro (good) 3964
za (for) 4708 ne (no) 16211 reći (say) 968 čovjek (human) 3496

Table 1.5: Top ten hubs in networks constructed from C3.

Figure 1.2: The impact of stopwords on the average clustering coefficient in accordance with the
various sizes of the corpus parts. Csw (from networks constructed with stopwords included) is
represented by solid lines, while the C (from networks constructed with stopwords excluded) is
represented by dashed lines. (a) m3 networks, (b) m6 networks.
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Figure 1.3: Comparison of plots. Probability density function (p(X), lower line) and complementary
cumulative distribution function (p(X ≥ x), upper line) of node degrees from networks constructed
from C3: (a) m2, stopwords included, (b) m6, stopwords included, (c) m2, stopwords excluded, (d)
m6, stopwords excluded.

1.6 Conclusion

In this work we have presented multiple metrics of complex networks constructed as co-occurrence
networks from the Croatian language. Since, the sensitivity of the linguistic network parameters to
the corpus size and stopwords [4,5] is a known problem in the construction of linguistic networks, we
analyzed the Croatian co-occurrence network. We presented the results of 30 networks constructed
with the aim to examine variations among: corpus size, stopword removal and the size of the
co-occurrence window.

The results in Tables 1.2, 1.3, 1.4, are pointing that the increase of the co-occurrence window
size is followed by the diameter D decrease, average path L shortening and expectedly condensing
the average clustering coefficient C. It is worth noticing, that the increased window size contributed
to the results the same as the increase of the used quantity of texts did, suggesting emphasized small-
world properties. The larger size of co-occurrence window plays a key role in the strengthening
of properties of the small-world networks. This observation should be considered in detail in the
prospect work.

Furthermore, the inclusion of stopwords in the process of network construction causes the same
effect. It is evident from Table 5 that stopwords, although they have no strong semantic properties,
act as hubs which can be cumbersome for semantic text analysis. The inclusion of stopwords in
co-occurrence networks seems to contribute to the benefit of power law distribution, regardless of
the co-occurrence window size. We point out the varying behaviour of the clustering coefficient
(dynamics) by increasing the corpus size. According to our results, it depends on the presence of
stopwords in the corpus: increasing the corpus size with stopwords included, increases the value of



20 Chapter 1. Preliminary Report on the Structure of Linguistic Networks

C, while increasing the corpus size with the stopwords excluded, decreases the value of C.
Finally, since the size of texts is reflected in the network properties, our results suggest that the

influence of the corpus can be reduced by increasing the co-occurrence window size. This work
is a preliminary study of the Croatian linguistic network, and more detailed research should be
performed in the future. Firstly, the results should be tested on a larger corpus and power law and
scale free properties proven. Additionally, the research towards extracting network semantics is a
new and thrilling branch of our pursuit.



2. Complex Networks Measures for
Differentiation between Normal and Shuffled
Croatian Texts

2.1 Abstract

This work studies the properties of the Croatian texts via complex networks . We present network
properties of normal and shuffled Croatian texts for different shuffling principles: on the sentence
level and on the text level. In both experiments we preserved the vocabulary size , word and
sentence frequency distributions. Additionally, in the first shuffling approach we preserved the
sentence structure of the text and the number of words per sentence. Obtained results showed that
degree rank distributions exhibit no substantial deviation in shuffled networks, and strength rank
distributions are preserved due to the same word frequencies. Therefore, standard approach to
study the structure of linguistic co-occurrence networks showed no clear difference among the
topologies of normal and shuffled texts. Finally, we showed that the in- and out- selectivity values
from shuffled texts are constantly below selectivity values calculated from normal texts. Our results
corroborate that the node selectivity measure can capture structural differences between original
and shuffled Croatian texts.

2.2 Introduction

The complex networks sub-discipline tasked with the analysis of language has been recently
associated with the term of linguistic’s network analysis. The linguistic network can be based on
various language constraints: structure, semantics, syntax dependencies, etc.

In the linguistic co-occurrence complex networks properties are derived from the word order
in texts. The open question is how the word order itself is reflected in topological properties of
the linguistic network. One approach to address this question is to compare networks constructed
from normal texts with the networks from randomized or shuffled texts . Since the majority of
linguistic network studies have been performed for English, it is important to test whether the same
properties hold for Croatian language as well. So far, there have been only sporadic efforts to model
the phenomena of the Croatian language through complex networks [18] [21].

In this Chapter we address the problem of Croatian text complexity by constructing the linguistic
co-occurrence networks form: a) normal texts, b) sentence-level shuffled texts, and c) text-level
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shuffled texts. This work extends our previous research [21] with additional sentence-level shuffling
procedure and by introducing a node selectivity as a new complex network measure. Our experiment
tests whether selectivity can differentiate between normal and meaningless texts.

Section 2.3 presents an overview of related work on complex network analysis of randomized
texts. In Section 2.4 we define measures for the network structure analysis. In Section 2.5 we
present shuffling procedures and the construction of co-occurrence networks. The network measures
are in Section 2.6. In the final Section, we elaborate the obtained results and make conclusions
regarding future work.

2.3 Related Work
Some of the early work related to the analysis of random texts dates to 1992, when Li [16] showed
that the distribution of words frequencies for randomly generated texts is very similar to Zipf’s
law observed in natural languages such as in English. Thus, the feature of being a scale-free
network does not depend on the syntactic structure of the language. Watts and Strogatz [20]
showed that the network formed by the same amount of nodes and links but only establishing links
by choosing pairs of nodes at random has a similar small network distance measures as in the
original one. Caldeira et al. [4] analyzed the role played by the word frequency and sentence length
distributions to the undirected co-occurrence network structure based on shuffling. Each sentence
is added to the network as a complete subgraph. Shuffling procedures were conducted either on
the texts or on the links. Liu and Hu [17] discussed whether syntax plays a role in the complexity
measures of a linguistic network. They built up two random linguistic networks based on syntax
dependencies and compared the complexity of non-syntactic and syntactic language networks.
Krishna et al. [15] studied the effect of linguistic constraints on the large scale organization of
language. They described the properties of linguistic co-occurrence networks with the randomized
words. These properties were compared to those obtained for a network built over the original
text. It is observed that the networks from randomized texts also exhibit small-world and scale-free
characteristics. Masucci and Rodgers showed [11] [19] that the holds when they shuffled the words
in the text. Thus, they showed that degree distribution is not the best measure of the self-organizing
nature of weighted linguistic networks . Due to the equivalence between frequency and strength of
a node, shuffled texts obtain the same degree distribution, but lose all the syntactic structure. They
have analyzed the differences between the statistical properties of a real and a shuffled weighted
network and showed that the scale-free degree distribution and the scale-free weight distribution
are induced by the scale-free strength distribution. They proposed a measure, the node selectivity,
that can distinguish a real network from a shuffled network. Selectivity is defined as the average
weight distribution on the links of the single node.

Preliminary results on Croatian co-occurrence networks presented in [18] point out that the
increase of the co-occurrence window size is followed by a decrease in diameter , average path
shortening and, expectedly, the condensing of the average clustering coefficient . The stopwords
removal causes the same effect. When comparing Croatian literature networks to networks from
other languages such as English and Italian [14] some expected universalities such as small-world
properties are shown, but there are still some differences. The Croatian language exhibits a higher
path length than English and Italian language which can be caused by the mostly free word order
nature of Croatian.

Initial attempt [21] to analyse network properties of normal and shuffled Croatian texts show
that the text shuffling causes the decrease of the network diameter, due to the establishment of
previously non-existing links. Furthermore, the results indicate a slight difference in the average
clustering coefficient which is higher for the networks based on the shuffled text. Also, obtained
results showed that node degree distributions are preserved in text-level shuffled networks , due to
the same word frequencies (e.g. Zipf’s law).
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2.4 The Network Structure Analysis
In the network, N is the number of nodes and K is the number of links. In weighted networks every
link connecting two nodes has an associated weight w ∈ R+

0 . The co-occurrence window mn of size
n is defined as n subsequent words from a text. The number of network components is denoted by
ω .

For every two connected nodes i and j the number of links lying on the shortest path between
them is denoted as di j, therefore the average distance of a node i from all other nodes is:

di =
∑ j di j

N
. (2.1)

And the average path length between every two nodes i, j is:

L = ∑
i, j

di j

N(N−1)
. (2.2)

The maximum distance results in the network diameter :

D = maxidi. (2.3)

For weighted networks the clustering coefficient of a node i is defined as the geometric average
of the subgraph link weights:

ci =
1

ki(ki−1) ∑
i j
(ŵi jŵikŵ jk)

1/3, (2.4)

where ki is the degree of the node i, and the link weights ŵi j are normalized by the maximum
weight in the network ŵi j = wi j/max(w). The value of ci is assigned to 0 if ki < 2.

The average clustering of a network is defined as the average value of the clustering coefficients
of all nodes in a network:

C =
1
N ∑

i
ci. (2.5)

If ω > 1, C is computed for the largest network component .
The out-degree and in-degree kout/in

i of node i is defined as the number of its out and in nearest
neighbors.

The out-strength and the in-strength sout/in
i of the node i is defined as the number of its outgoing

and incoming links, that is:

sout/in
i = ∑

j
wi j/ ji. (2.6)

We then define for the node i the out- and in- selectivity as

eout/in
i =

sout/in
i

kout/in
i

. (2.7)

2.5 Methodology
2.5.1 Data

For the construction and analysis of co-occurrence networks, we used the corpora of 10 books
written in or translated into the Croatian language. We divided the corpora into two parts: the first -
C1 includes one book, and the second - C2 includes all books. The C1 contains: 191941 words
(27453 unique) in 17045 sentences; and C2: 888293 words (91420 unique) in 57179 sentences.
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2.5.2 The Shuffling Procedure
Commonly, the shuffling procedure randomizes the words in the text, transforming the text into the
meaningless form. We shuffled the C1 and C2 corpora in two ways: a) shuffling on the sentence
level, and b) shuffling on the text level . In both ways we preserved the vocabulary size, the word
and sentence frequency distributions.

In the sentence-level shuffling we preserved the sentence length (the number of words per
sentence) and sentence order. Versions of C1 and C2 shuffled on the sentence level are noted as
C1’ and C2’. In the text-level shuffling, the original text is randomized by shuffling the words
and punctuation marks over the whole text. This approach preserves the number of sentences but
changes the number of words per sentence. Versions of C1 and C2 shuffled on the text level are
noted as C1* and C2*. Figure 2.1 shows the histograms of sentence length frequencies for C2 and
C2* corpora.

Figure 2.1: Histograms of sentence length frequencies for C2 and C2*

2.5.3 The Construction of Co-occurrence Networks
Text can be represented as a complex network of linked words: each individual word is a node and
interactions amongst words are links. We constructed six different co-occurrence networks (C1,
C1’, C1*, C2, C2’, C2*) all weighted and directed . Words are nodes linked if they are co-occurring
as neighbors to each other in a sentence. The weight of the link is proportional to the overall
co-occurrence frequencies of the corresponding word pairs within a corpus.

Network construction and analysis was implemented with the Python programming language
using the NetworkX software package developed for the creation, manipulation, and study of the
structure, dynamics, and functions of complex networks [8].

2.6 Results
The measures of the networks constructed from C2 corpus, sentence-level shuffled C2’, and text-
level shuffled C2* are presented in Table 2.1. The results show that the shuffled networks have
decreased values of the average path length L and network diameter D, and have the value of the
average clustering coefficient C increased.

In the networks constructed from the corpora shuffled on the text-level the number of nodes N
(NC1∗ < NC1,NC2∗ < NC2) is smaller than the number of words in the original corpora. During the
network construction process, the sentences containing just one word are disregarded, because our
approach limits the word linkage to the sentence delimiters. This causes sentences with exactly one
word to be isolated from the network, which reduces the number of nodes N in C1* and C2*.

One of the standard approaches to examine properties of co-occurrence networks is node degree
distribution for unweighted and node strength distribution for weighted. Shuffling preserves the
degree distribution due to the word frequencies [19] [21]. In this work we use rank distribution to
compare different texts. Rank and frequency distributions are related through Zipf’s law : the word
frequency is inversely proportional to it’s rank.
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C2 C2’ C2*
N 91328 91328 91204
K 465196 586110 599335
L 3.097 3.037 2.997
D 23 17 10
C 0.317 0.343 0.354
ω 22 22 10

Table 2.1: Network measures for original C2, sentence-level shuffled C2’ and text-level shuffled
C2*.

Figure 2.2: Degree rank distributions for the C1, C1’, C1*, C2, C2’, C2*.

Figure 2.3: Strength rank distributions for the C1, C1’, C1*, C2, C2’, C2*.

Figure 2.4: In-selectivity rank distributions for the C1, C1’, C1*, C2, C2’, C2*.

Initially, we computed the degree and strength rank distributions only for C2 and correspond-
ing shuffled versions. As expected, the degree rank distributions, as well as the strength rank
distributions are preserved during the shuffling procedure. In order to explore whether the same
holds for substantially smaller corpus we checked degree and strength rank distributions for C1
as well. Figures 2.2 and 2.3 present degree and strength rank distributions for the C1, C1’, C1*,
C2, C2’ and C2*. Degree rank distributions exhibit no substantial deviation in shuffled networks,
and strength distribution is preserved due to the same word frequencies. At this point all network
measures and distributions showed no substantial differences between the structure of the original
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Figure 2.5: Out-selectivity rank distributions for the C1, C1’, C1*, C2, C2’, C2*.

and meaningless texts.
The global network measures: average shortest path length, diameter, clustering coefficient

and degree and strength distribution may not be well-suited to discriminate between original and
meaningless texts. Therefore, it is necessary to include local (node level) network measures.
Motivated by the reported results form [19], which introduced the local measure of node selectivity,
we applied the same principle on our data. In weighted and directed co-occurrence networks nodes
have ingoing and outgoing links, therefore it is necessary to consider the in- and out- selectivity.

Figures 2.4 and 2.5 present obtained in- and out- selectivity ranks for C1 and C2, and their
shuffled counterparts. Regardless of the links direction (in or out), selectivity values of networks
from the shuffled texts are constantly below selectivity values calculated from the normal texts.
This can be explained by the well known properties found in text - collocations. Collocations are
typical word pairs, triples,...etc. which are recognized as standard phrases or names (e.g. New
York). Shuffling procedures rearranged the word order, which disassembled collocations. This
effect is reflected in the selectivity, since the high weights of common phrases and collocations are
lost, which flattens and abates the selectivity ranks.

2.7 Conclusion

We studied the structure of the linguistic networks constructed from normal and shuffled texts in
Croatian. As expected, the text shuffling causes the decrease of the average path length L and the
network diameter D, and the increase of the average clustering coefficient C.

We showed that the degree rank distributions exhibit no substantial deviation in shuffled
networks, and the strength rank distributions are preserved due to the same word frequencies. The
standard approach to study the structure of linguistic co-occurrence networks showed no substantial
differences among the topologies of the original and shuffled texts. Therefore we utilized the node
selectivity measure proposed by Masucci and Rodgers in [19].

Our results showed that the in- and out- selectivity values from shuffled texts are constantly
below selectivity values calculated from normal texts. It seems that selectivity captures typical word
phrases and collocations in Croatian which are lost during the shuffling procedure. The same holds
for English where Masucci and Rodgers found that selectivity somehow captures the specialized
local structures in nodes’ neighborhood and forms of the morphological structures in text. Based on
this findings, the measure of selectivity can be useful to discriminate between different text types,
which will be the part of our future work.

We have shown that the Croatian language networks have similar properties as language
networks from English and other languages. Firstly, Croatian text shuffling has no influence on the
degree and strength distributions, which has already been shown for English [11, 19], English and
Portuguese [4] and English, French, Spanish and Chinese [15]. Furthermore, distance measures
(average shortest path length and diameter) show that networks based on normal texts have a greater
L and D value than the corresponding network based on shuffled text. The same relations for
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average clustering coefficient, average shortest path length and diameter are shown in [15] for all
studied languages (English, French, Spanish and Chinese). Similar results are shown for English
and Portuguese in [4], although the authors used different shuffling procedures.

Our results imply that the node selectivity is a measure suitable for fine-grained differentiation
between an original and meaningless text. Furthermore, selectivity can potentially be considered
as a measure for discrimination between different text types, capturing the aspect of quality of
texts. This should be thoroughly examined in the future work, which will cover: a) differentiation
between text types from linguistic network structure, b) finding which set of measures reflects the
quality of the texts, c) the analysis of the Croatian linguistic networks using syntax dependencies
instead of pure co-occurrence.





3. Comparison of Linguistic Networks Measures
for Parallel Texts

3.1 Abstract

In this work we compared the properties of linguistic networks for Croatian, English and Italian
languages. We constructed co-occurrence networks from parallel text corpora, consisting of the
translations of five books in the three languages. We generated an Erdös-Rényi random graph with
the same number of nodes and links, which enabled the comparison with linguistic co-occurrence
networks, showing small-world properties. Furthermore, the comparison of Croatian, English and
Italian linguistic networks showed that, besides expected commonalities of networks, there are also
certain differences. The networks’ measures across the three studied languages differ particularly
in the shortest path length. The results indicate that size of the corpus and anomalies in text affect
the network structure.

3.2 Introduction

Network analysis nowadays exhibits a growing popularity because it provides a way to analyse real
complex systems. Language is an example of a complex system and in the last decade it has been
the subject of many network based studies, highlighting the field of linguistic networks . Various
linguistic networks can be analysed such as syntax networks [22–24], semantic networks [3],
phonological networks [11,25,26], syllable networks [30,31], word co-occurrence networks [9,11].

The focus of the research in linguistic networks has shifted from one language to multiple
languages. The work in [28] examines structural differences in Chinese and English by comparing
the intensity and density of the connection in networks. In [27] the network properties of the English
and German Wikipedia are compared. The paper by Liu and Jin [10] studied language networks on
multilingual parallel texts of 15 languages. One of the 12 Slavic languages was Croatian. Network
parameters were used for the hierarchical classification of the languages.

Besides multiple language studies (language differentiation and classification ) the research
community’s attention is also focused on the genre of literature or author detection, based on the
analysis of complex networks. The authors in [36] examine the correlation between the network
properties and author characteristics in terms of the clustering coefficient, in and out degree, degree
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distribution and component dynamics. The corpus used included over 40 books by eight authors in
English. The work [32] investigates the properties of the writing style of five Persian authors in 36
books. The network derived measures: degree distribution and power law α-exponent were used
for authorship identification.

Our research is an initial attempt at the analysis of parallel corpora of Croatian, Italian and
English literature. We examined the comparative network properties of three languages in terms of
language and book differentiation. The parallel nature of the corpus, consisting of the translations of
five books in three languages, gives the opportunity to compare network properties across languages
and to check the translation consistency on the book level.

Section 3.3 of the Chapter 3 presents key measures of complex networks. Section 3.4 discusses
the experiments set up and in Section 3.5 the results are shown. The Chapter 3 concludes with the
discussion and further research plans.

3.3 Methodology

Every network is constructed of nodes N and links K. The degree ki of a node i is the number of
connections that the node has. The average degree of the network is:

< k >=
2K
N

. (3.1)

For every two connected nodes i and j the number of links lying on the shortest path between
them is denoted as di j, therefore the average distance of a node i from all other nodes is:

di =
∑i6= j di j

N−1
. (3.2)

The shortest path length L is an average value of di of all nodes:

L = ∑
i, j

di

N
, (3.3)

and the maximum distance between two nodes in the network is the diameter D:

D = maxidi. (3.4)

The clustering coefficient ci of a node i is described as a probability of the presence of a link
between any two neighbours of a node. It is calculated as a ratio between the number of links Ei

that actually exist amongst these and the total possible number:

ci =
2Ei

ki(ki−1)
(3.5)

The average clustering of a network C is the average value of the clustering coefficient of all
the nodes:

C =
1
N ∑

i
ci. (3.6)

One of the commonly examined properties of real world networks are small-world properties [9].
The network is a small-world if its shortest path length L ∼ LER and its clustering coefficient
CER�C where LER is the shortest path length and CER is the clustering coefficient of an Erdös-
Rényi (ER) random graph with the same number of nodes and links [39].
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3.4 Experiments
3.4.1 Data

We prepared a twofold balanced corpus : parallel translations of five books in Croatian, Italian and
English. Each book was originally written in one and translated to the other two languages. We
took care that for each language at least one native book is present and the length of the books
varies from short to long (Table 3.1).

Every text was cleared of the table of contents, the author’s biography and page numbers.
Afterwards the corpus was tokenized, the punctuation marks, special characters, and stopwords
were removed and inflected word forms were lemmatized. For Croatian we used the stopwords
list of 2922 words, for English 341 words and Italian 371 words. Table 1 shows the number of
words with and without stopwords per book depending on the language. For Croatian we used the
Croatian Lemmatization Server [35] for Italian and English TreeTagger [34].

Language Book With stopwords Without stopwords
English B1-EN 47684 16372

B2-EN 147537 56525
B3-EN 27299 10120
B4-EN 235245 89245
B5-EN 204517 76476

Italian B1-IT 48487 33657
B2-IT 156325 115855
B3-IT 25523 20136
B4-IT 235207 183435
B5-IT 213147 157878

Croatian B1-HR 44433 18627
B2-HR 125997 59293
B3-HR 24507 10973
B4-HR 217987 100308
B5-HR 198188 90299

Table 3.1: The total number of words in the books with and without stopwords by book and
by language. The Croatian books show a smaller number of words but after the removal of the
stopwords the total number of words is higher than in the Italian and English.

3.4.2 Networks Construction from Books
We constructed a co-occurrence network for each book: 15 directed and 15 undirected from the
cleaned corpus. Words are represented as nodes and linked if they appear as adjacent words in the
text. For the directed network two words are connected with and arc if one precedes the other. The
same applies for the undirected network only the words are connected with a link. Additionally, we
also generated an ER random graph with the same number of nodes and links for each network.

We used the Python programming language with its module NLTK [35] for text processing, the
NetworkX module [8] for the construction of the networks and analysis, and Gephi software [29]
for the manipulation of the networks and visualization.

3.5 Results
As shown in Tables 3.2 and 3.3, co-occurrence networks based on parallel texts share common
properties: a small shortest path length L and diameter D and a high clustering coefficient C in
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comparison with its associated ER graph. The difference between the clustering coefficient of
the linguistic and the random networks varies from the minimum CDIR ≈ 29CER to the maximum
CDIR ≈ 148CER. The linguistic networks for all three languages thus have small-world properties.
Another shared property of the undirected networks is a higher C and smaller L and D compared to
the same measures of the directed network of the same book. This means that undirected networks
are closer to the small-world networks, which is an expected result. However, there is one exception
with the results for book B5 the diameter of which increased in the undirected network.

Directed Erdös-Rényi
N < k > CDIR LDIR DDIR CER LER DER

English
B1-EN 2389 5.40 0.070 3.33 10 0.00228 4.60 15
B2-EN 7322 6.50 0.054 3.56 13 0.00089 5.34 19
B3-EN 1798 4.38 0.076 3.23 10 0.00247 4.53 14
B4-EN 12126 5.87 0.072 3.52 12 0.00049 5.93 20
B5-EN 10027 6.38 0.051 3.64 14 0.00064 5.59 20
Italian
B1-IT 3858 4.28 0.052 3.51 13 0.00111 5.06 17
B2-IT 9120 6.45 0.044 3.64 13 0.00071 5.51 21
B3-IT 2269 4.30 0.068 3.32 10 0.00191 4.65 14
B4-IT 14009 6.34 0.047 3.62 14 0.00045 5.95 22
B5-IT 13403 5.86 0.044 3.65 14 0.00044 6.01 20
Croatian
B1-HR 4155 3.74 0.047 3.65 12 0.00090 5.09 16
B2-HR 12610 4.23 0.034 3.92 13 0.00033 5.93 21
B3-HR 2970 3.23 0.049 3.51 11 0.00110 4.69 15
B4-HR 15256 5.40 0.051 3.74 13 0.00036 6.20 20
B5-HR 15985 4.91 0.038 3.87 14 0.00031 6.25 21

Table 3.2: The results for the directed networks of five books in three languages: N number of
nodes, < k > average node degree, CDIR clustering coefficient, LDIR shortest path length, DDIR.
CER clustering coefficient, LER shortest path length and DER diameter of ER random graph.

Further analysis of B5 revealed a proportion of Latin and German, where Latin names, were
inflected in Croatian, and subsequently not lemmatized, which caused additional anomalies in the
results. The English lemmatizer failed due to the same problem too.

Table 3.4 presents network measures for the B5 after the removal of Latin and German words.
Compared to the initial B5 results from Tables 3.2 and 3.3 the DDIR and DUNDIR has decreased as
expected. The undirected network had changed more than the directed. The results suggest that
the Latin and German parts from the book created loops which caused CDIR to decrease. At the
same time B5 in Italian behaves differently due to the close nature of Italian and Latin, which was
partially captured during lemmatization.

The differences across languages are presented in Figure 3.1: in general, English has a higher
clustering coefficient C than Croatian.
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Undirected Erdös-Rényi
N < k > CUNDIR LUNDIR DUNDIR CER LER DER

English
B1-EN 2389 10.8 0.145 3.32 8 0.005 3.52 6
B2-EN 7322 13 0.109 3.36 8 0.002 3.74 6
B3-EN 1798 8.76 0.155 3.30 8 0.004 3.67 6
B4-EN 12126 11.74 0.144 3.52 8 0.001 4.07 7
B5-EN 10027 12.76 0.103 3.60 23 0.001 4.00 7
Italian
B1-IT 3858 8.56 0.108 3.45 9 0.003 4.08 7
B2-IT 9120 12.9 0.088 3.35 11 0.001 3.83 6
B3-IT 2269 8.6 0.137 3.29 9 0.004 3.82 7
B4-IT 14009 12.68 0.096 3.42 9 0.001 4.02 6
B5-IT 13403 11.72 0.088 3.60 19 0.001 4.12 7
Croatian
B1-HR 4155 7.48 0.099 3.58 10 0.002 4.36 8
B2-HR 12610 8.46 0.069 3.67 11 0.001 4.67 8
B3-HR 2970 6.46 0.098 3.54 9 0.003 4.47 8
B4-HR 15256 10.8 0.103 3.49 10 0.001 4.31 7
B5-HR 15985 9.82 0.077 3.77 22 0.001 4.49 8

Table 3.3: The results for the undirected networks of five books in three languages: N number
of nodes, < k > average node degree, CUNDIR clustering coefficient, LUNDIR shortest path length,
DUNDIR. CER clustering coefficient, LER shortest path length and DER diameter of ER random
graph.

N < k > CDIR LDIR DDIR

B5-EN 9355 6.754 0.054 3.59 13
B5-IT 10674 6.739 0.051 3.53 13
B5-HR 12817 5.463 0.042 3.82 14

N < k > CUNDIR LUNDIR DUNDIR

B5-EN 9355 62754 0.108 3.42 17
B5-IT 10674 6.739 0.103 3.43 15
B5-HR 12817 5.463 0.085 3.54 15

Table 3.4: The new values for the directed DIR and undirected UNDIR networks of B5 by language.

Figure 3.1: Values of average degree and clustering coefficient for 15 directed and 15 ER random
networks grouped in languages.
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Shortest path lengths L are the highest for Croatian, in the middle for Italian and the lowest for
the English language networks as shown in Figure 3.2. Similar results are presented in [8] where it
is shown that Croatian language has larger values of L and D but C twice as small than those of
English. According to the graphs shown in Figure 3.2 the shortest path length seems to be more
influenced by the language than diameter. D depends on the book size, but it is also sensitive to
potential anomalies in the book’s language, as is previously shown for book 5.

Figure 3.2: In the first row the ratio between the diameter of the books by language for directed and
undirected networks is shown. The second row is the differentiation by the shortest path length.

3.6 Conclusion

In this Chapter we have examined linguistic networks for Croatian, English and Italian language.
The measures of 30 directed and undirected co-occurrence networks for five books in three lan-
guages have been compared.

It has been shown that for all languages co-occurrence networks share small-world properties
and corpus-sensitivity. Corpus size and possible anomalies in the text have an impact on the
network structure in all three languages. An anomaly, such as the introduction of another language
causes that the diameter of an undirected network becomes much higher than the diameter of a
directed network as has been shown in the case of book B5. In addition, the results show that there
are expected differences between the measures for directed and undirected networks for all three
languages.

However, further examination of the measures of networks differs across languages: the
clustering coefficient of English and Italian books is closer than that of Croatian. The Croatian
language exhibits a higher path length in both directed and undirected networks, which can be
caused by the relatively free word order. The word order of English is more precise than the Italian
which is reflected in the directed networks in Figure 3.2. The Croatian language also has the
smallest clustering coefficient which can indicate a richer language morphology. This result is
partly sensitive to the degraded lemmatization of Croatian, which is also grounded in its complex
morphology.
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Finally, the shortest path length and clustering coefficient show language differentiation poten-
tial and should be analysed on larger corpora to test if they may be used as language classifiers. On
the other hand the diameter is more related to books, which implies that it could be used as measure
of the authors’ vocabulary or verbosity. In further work all results should be tested on larger corpora
in more languages in order to classify authorial or book genres from network parameters.





4. A Preliminary Study of Croatian Language
Syllable Networks

4.1 Abstract

This research presents preliminary results of Croatian syllable networks analysis. Syllable network
is a network in which nodes are syllables and links between them are constructed according to
their connections within words. In this work we analyze networks of syllables generated from texts
collected from the Croatian Wikipedia and Blogs. As a main tool we use complex network analysis
methods which provide mechanisms that can reveal new patterns in a language structure. We aim to
show that syllable networks have much higher clustering coefficient in comparison to Erdös-Renyi
random networks . Furthermore, our results have been compared with other studies on syllable
networks of Portuguese and Chinese and we show that Croatian syllable networks have similar
properties as Portuguese and Chinese syllable networks. The results indicate that Croatian syllable
networks exhibit certain properties of a small world networks.

4.2 Introduction

Network analysis has become significant method in different research areas such as biology,
computer science, economics, sociology, medicine and linguistics. Complex networks are a class
of networks that exhibit specific topological features, such as high clustering coefficients, small
diameters, power-law degree distribution, community structures, one or several giant components,
hierarchical structures, etc. Two important classes of complex networks that can be further
differentiated are small-world networks [20, 40, 41] with high clustering as a main property and
scale-free networks [42,43] which can be characterized by power-law degree distribution. Language
can be viewed as a complex network if it is presented as a system of interacting units. Network
analysis provides mechanisms that can reveal new patterns in a complex structure and can thus be
applied to the study of the patterns in language structures. This, in turn, may contribute to a better
understanding of the organization and the structure and evolution of a language.

Network properties of written human languages have already been analyzed in different research
studies [3]. Networks based on co-occurrence of words in sentences are analyzed in [7, 9, 22].
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The topology of human written language, through a network representation of Orwell’s 1984, is
presented in [11], while the co-occurrence properties of words in different languages are studied
in [5]. All these studies have shown that language networks exhibit properties indicative of small-
world networks, e. g. Pemble and Bingol [27] have constructed two complex networks out of
Wikipedia English and German corpora and analyze conceptual networks in different languages.

So far, syllable networks have been constructed exclusively for Portuguese [30] and Chinese
[44]. In both experiments, syllable networks have a large clustering coefficient and power-law
degree distribution, as opposed to the Erdös-Rényi (ER) random networks [45], which have low
clustering coefficient and Poisson-like degree distribution. In [30] the syllable network is used to
demonstrate that language in itself resembles a living organism, evolving in time and space.

Network analysis of the syllables connections in the words may be of theoretical interest in
the domain of phonology, morphology and language topology [46]. Analyses of properties of
syllable networks can help in determining the phonetic structure of a language, as well as providing
necessary grounds for further linguistic research. Besides theoretical analysis of language, syllable
network analysis may be of certain interest in the domain of natural language processing , for
speech recognition and speech synthesis. Syllables can be used as acoustic units in automatic
speech recognition and as units in text-to-speech systems [47–49]. In [48, 49] a syllable-based
language model is presented and it corresponds to the weighted syllable network.

In this Chapter we describe experiments with syllable networks for the Croatian language. We
constructed four different syllable networks from texts collected Croatian Wikipedia and Blogs. The
main goal was to analyze if the Croatian language syllable networks have properties of small-world
networks and to analyze if these properties are similar to the properties of Portuguese and Chinese
syllable networks. Furthermore, the aim was to compare two different strategies for network
construction. As well, we wanted to compare networks from two different text corpora. The
presented work is the first attempt to model Croatian syllables as the complex network.

In the Section 4.3 we present different syllable network construction strategies, text corpora
and syllable networks that are constructed from the text. In the Section 4.4 we describe how to
estimate network measures. In the Section 4.5 we present results. In the Section 4.6 we elaborate
on the obtained data and provide concluding remarks.

4.3 Networks Construction

4.3.1 Syllable Networks Construction Strategies

Different strategies can be applied in building syllable networks from text. The idea of a syllable
network is to represent syllables as nodes and establish links between them according to their
connections within words. Generally speaking, a syllable network can be either undirected or
directed and unweighted or weighted . In a directed syllable network, a directed link indicates
the direction of the connection; displaying which syllable (node) is the initial and which syllable
(node) is the target. By using a directed network, the successor or the predecessor of an intended
syllable can be seen, possibly providing the grounds for further statistical analysis of language
structure on the phonetic level . Weighted syllable networks contain information about the number
of established links between two syllables, which is again significant in phonetic structure analysis.

A question of how to establish the links between the nodes (syllables) must be discussed. One
way is to connect the syllables that belong to the same word (syllable co-occurrence network) and
another way is to connect only the neighbour syllables (first-neighbour network ). This results in
eight different syllable network models. In [30, 44], the network is constructed in a way that two
nodes (syllables) are connected if they belong to the same word, making the network undirected
and unweighted. This simplified model of a syllable network is constructed in order to study the
evolution of the language using phonetic elements [30]. We constructed three networks according
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to this model. In our opinion, for some purposes that include natural language processing and
linguistic studies, it also makes sense to construct a syllable network of syllables that are direct
neighbours in the word. Therefore we additionally constructed and analyzed one directed and
weighted neighbour network.

4.3.2 Data

We analyzed different networks of syllables from different text corpora . The texts used for building
the networks are two large corpora. The first corpus is the Croatian Wikipedia . The second corpus
contains 3.218 articles collected from different Croatian blogs (including 4 religious and 5 political
portals, 6 blog spaces, 3 web-pages with comments and 4 columns from the daily newspapers).

The reason why we have chosen these corpora is because our future work is focused on the text
collected from the Web. Another possible approach is to choose a dictionary of Croatian language
as a network source. But in [30] it is shown that there is no big difference between syllable networks
constructed from the book and syllable network constructed from the dictionary for unweighted
networks. A problem we encountered was the Wikipedia corpus containing a certain number of
foreign words. This is the reason why the initial network had certain syllables unusual for the
Croatian language. Therefore, we examined a filtered network from which all nodes with small
degree (meaning that they contain some rare and unusual syllables) were excluded. There is a
linguistic difference between the two corpora. The Wikipedia corpus is more formal, so there
are more standard words with a pattern in writing. On the other hand, the blog corpus is mostly
written in an informal manner, with the use of dialect, slang or abbreviations. However, all of the
mentioned texts specifics collected from the web are essential for our future work.

4.3.3 Syllable Networks

We constructed four different networks. Three of them were designed as word co-occurrence
syllable networks: the first from the Wikipedia text - CW , the second from the blog text - CB, and
the third was devised from both corpora - CWB. The fourth network was constructed as a directed
and weighted first-neighbour syllable network from the Wikipedia text. The number of nodes and
edges for all four networks are displayed in Table 4.1.

CW CB CWB CW −Dir
Nodes (N) 4284 2000 4067 4438
Links (K) 170248 36202 173660 3334

Table 4.1: The number of nodes and edges in the four syllable networks.

Network construction is implemented in the Python programming language which contains the
NetworkX software package developed for the creation, manipulation, and study of the structure,
dynamics, and functions of complex networks [8]. For network visualization we used Gephi
software [29]. For the separation of a word into syllables we use syllabification algorithm that is
implemented according to the rules described in [46]. The syllabification process is Both corpora
where in txt file format which made the reading and processing easy and the only problem was the
encoding because of our diacritical signs such as č, ć, š, ž etc. The NetworkX module provided
us with all the necessary commands to construct a graph and then export it in the desired format.
The co-occurrence syllable network constructed from texts from Wikipedia (CW ) visualized using
Gephi is shown in Figure 4.1. The most frequent syllables are pointed out.

Another co-occurrence syllable network constructed from blog corpus (CB) is shown in Fig-
ure 4.2. This is a smaller network with smaller number of nodes, but the most frequent nodes
(syllables) are similar to the first network, which is discussed in the Section 4.4.
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Figure 4.1: Syllable network from Wikipedia CW .

The third network is constructed from both Wikipedia and blog corpora . Syllables with the
most connections with other syllables are pointed out and are almost the same as in the first network.
The fourth network is constructed as a directed and weighted network of first neighbor syllables
from words that appear in the texts of the Croatian Wikipedia. The idea was to compare this
network to the other three networks and to see if it had potential in phonetic structure analysis.

4.4 The Network Structure Analysis

In this Section we explain the most important measures for network analysis. Every network has a
number of nodes N and links K. The degree of a node i is the number of connections of the node
and is denoted by ki. Thus, the average degree of the network is:

< k >=
2K
N

. (4.1)

For every two connected nodes i and j the number of links lying on the shortest path between
them is denoted as di j, therefore the average distance of a node i from all other nodes is:

di =
∑ j di j

N
. (4.2)

From where we easily obtain the average path distance L as the average value of di of all nodes:

L = ∑
i, j

di j

N(N−1)
, (4.3)
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Figure 4.2: Syllable network from blog corpus CB.

and the maximum distance results in the network diameter D:

D = maxidi. (4.4)

The clustering coefficient is described as a presence of connections between the nearest neigh-
bours of a node. The clustering coefficient Ci of a node i is defined as a ratio between the number
of edges Ei that actually exist among these ki and the total possible number of edges:

Ci =
2E

K(K−1)
. (4.5)

The average clustering of a network C is the average value of the clustering coefficient of all
the nodes:

C =
∑iCi

N
. (4.6)

The main property of small-world networks is that the distance between two random nodes
grows proportionally to the logarithm of the number of nodes. Therefore, small-world networks tend
to have small diameter and short average distance which is the property of random ER networks.
Another important property is the high clustering coefficient in comparison to random ER networks.
Furthermore, for complex networks it’s typically a power-law degree distribution .

4.5 Results
One of our objectives in this experiment is to see if constructed syllable networks of the Croatian
language have properties of small-world networks. Small-world properties have already been proven
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for syllable networks of the Portuguese and the Chinese language; therefore we expected to find
similar results for the Croatian language. For the purpose of comparing constructed networks with
random networks, ER networks with the same number of nodes and edges have been constructed
and all the important properties have been analyzed. Using Gephi we filtered the networks and
determined the average degree < k >, diameter D, average distance L, average clustering coefficient
C and some other network values. The correspondent values of these coefficients are shown in
Table 4.2.

CW ERW CB ERB CWB ERWB

N 4284 4284 2000 2000 4067 4067
< k > 39.74 39.74 18.1 18.1 42.7 42.7

D 4 3 4 3 3 3
L 2.151 2.209 2.310 2.489 2.113 2,143
C 0.691 0.017 0.687 0.016 0.690 0.021

Table 4.2: Estimated network measures for co-occurrence syllable networks.

The results show that all three co-occurrence syllable networks have a small diameter and
average path distance. Furthermore, for all three networks it holds < k >� N which shows
that syllable networks are sparse as it is expected for complex networks. In comparison to the
ER networks with the same number of nodes and edges these networks show a high clustering
coefficient: C(CW ) ≈ 40C(ERW );C(CB) ≈ 42C(ERB);C(CWB) ≈ 33C(ERWB). All these results
lead to a conclusion that co-occurrence syllable networks of Croatian language exhibit small world
network properties. We compared our results with the results obtained for the Portuguese and
Chinese languages and concluded that there is a similarity between these families of syllable
networks. Syllable networks of the Portuguese and of the Croatian language are similar in size, are
both sparse, have a small diameter, small size of average path length and both have a high clustering
coefficient. Syllable networks of the Chinese have different sizes, but the properties show that these
are also small-world networks.

The results of the fourth, weighted and directed first-neighbour syllable network analysis are
shown in Table 3. Although C for the first-neighbour syllable network was smaller than in the
co-occurrence syllable networks, in comparison with the random network 1, it was still about 30
times larger than random network C. These values indicate that the first-neighbour syllable network
may be a small-world network as well, however, more experiments with larger corpora need to be
conducted.

CW −Dir CW −Undir ER
N 4438 4438 4438
K 33341 33341 33341
D 9 8 5
C 0.153 0.208 0.007

Table 4.3: Estimated network measures for the first-neighbour syllable network.

In these preliminary experiments we did not estimate the degree distributions for syllable
networks. However, we did use NetworkX functions to plot degree distributions on the log-log
scale and the result that we got for the co-occurrence syllable network is shown in Figure 4.3. The

1For the purpose of comparison to the random network, it was transformed into an undirected, unweighted network.
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straight line on log-log scale indicates that a power-law distribution should be tested in further
experiments.

Figure 4.3: Degree distribution for co-occurrence syllable network.

Small subnetworks were filtered with ten nodes each from all three networks with the highest
degree. The results are shown in Table 4.4. It is shown that all three networks have almost the
same nodes with the highest degree. This indicates that different corpora do not create significant
differences between the networks.

CA CW CB

Syll. Degree Syll. Degree Syll. Degree
ma 2299 ma 2296 ma 836
na 2166 na 2156 ti 824
ni 1937 ni 1927 na 753
ti 1918 ra 1897 ni 741
ra 1894 a 1890 ka 627
a 1860 ti 1889 ci 626

ne 1808 ne 1792 ra 623
ka 1801 ka 1773 je 604
o 1692 o 1672 no 595
ta 1682 ta 1670 ne 593

Table 4.4: The most frequent syllables.

The weight of the link between two nodes is proportional to the overall co-occurrence frequen-
cies of the corresponding words within a co-occurrence window . For all three parts of the corpus
C1, C2, C3, we examined the properties of co-occurrence networks constructed with various mn,
n = 2,3,4,5,6. Besides 5 window sizes for co-occurrence networks, we also differentiate upon the
criterion of the inclusion or exclusion of stopwords.

Network construction and analysis was implemented with the Python programming language
using the NetworkX software package developed for the creation, manipulation, and study of the
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structure, dynamics, and functions of complex networks [8]. Numerical analysis and visualization
of power law distributions was made with the ‘powerlaw’ software package [1] for the Python
programming language.

4.6 Conclusion
In this Chapter we presented different approaches in syllable networks construction. Undirected and
unweighted word co-ccurrence syllable networks have been already constructed and analyzed for
two languages: Portuguese and Chinese. The same syllable networks constructed for the Croatian
language (from different corpora) exhibited similar results. The networks contain a high cluster
coefficient compared to random networks of the same size and small diameter and average path
length. In conclusion, the Croatian language syllable networks have properties of small-world
networks. Another approach was to construct a directed and weighted first-neighbour syllable
network for the Croatian language. As far as we know, this is the first time this syllable network
construction type has been utilized. The main idea of this approach is to capture more information
about the properties of each syllable (the successor, the predecessor and strength of connections
with other syllables). It is shown that this kind of network has small-world network properties as
well. These are just preliminary results and there is still a lot of future research to be conducted in
this direction. The syllabification algorithm from [46] should be reconsidered and the correctness
of the Croatian syllabification should be assessed. Furthermore, detailed statistical analysis should
be performed. The experiment should be repeated with larger corpora such as Croatian literature
and dictionaries. However, it is necessary to determine an exact degree distribution for all networks.
Our plan is to analyze the network growth and possible communities in the network.



5. Network Motifs Analysis of Croatian Literature

5.1 Abstract

In this research we analyse network motifs in the co-occurrence directed networks constructed
from five different texts (four books and one portal) in the Croatian language. After preparing
the data and network construction, we perform the network motif analysis. We analyse the motif
frequencies and Z-scores in the five networks. We present the triad significance profile for five
datasets. Furthermore, we compare our results with the existing results for the linguistic networks.
Firstly, we show that the triad significance profile for the Croatian language is very similar with the
other languages and all the networks belong to the same family of networks. However, there are
certain differences between the Croatian language and other analysed languages. We conclude that
this is due to the free word-order of the Croatian language.

5.2 Introduction

Many scientists from different disciplines study networks because of their ubiquity. The complex
networks in nature share global properties such as small-world property of short paths between
vertices and highly clustered connections [55]. In addition, many of these networks are scale-free
networks, characterised by power-law degree distribution [43]. However, besides these global
network characteristics, there are certain properties on the meso-scale and local-scale [3] that
explain structural differences between complex networks. That is why more detailed network
analysis on the meso-scale and on the local-level is important. Network analysis on the meso-
scale and local-scale may include: community detection [13], motif analysis [51] or graphlet
analysis [53].

In this resarch we are focused on the network motifs’ analysis. Network motifs are connected
and directed subgraphs occurring in complex networks at numbers that are significantly higher than
those in randomized networks [51]. Motifs may contain up to 8 vertices. For now, there have been
reports on 3-vertex and 4-vertex motifs due to the complexity of the algorithm that identifies the
motifs from the complex networks.
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Alon et al. [52] analyse superfamilies of networks based on significant motifs (Figure 5.1). The
first group of networks are from three microorganisms: the Escherichia coli, Bacillus subtilis and
the Saccharomyces cerevisiae. These microorganisms form sensory transcription networks, the
vertices represent genes or operons and the edges represent direct transcriptional regulation. They
form the first superfamily which includes three types of biological networks: signal-transduction
interactions in mammalian cells, developmental transcription networks arising from the review of the
development of the fruit fly and sea-urchin, and synaptic wiring between neurons in Caenorhabditis
elegans. They also studied three WWW networks of hyperlinks between web pages related to
university, literature and music. A feature of these networks is the transitivity of the relations, as
evidenced by the motifs presented in these networks that are highly transitive. Similar results are
obtained by testing three social networks, where people from the group are represented by vertices.
The connections between two people, a positive opinion of one member of the group to another
member, were represented by edges, obtained on the basis of questionnaires. The conclusion is that
social networks and the web are probably members of the same superfamily, which may facilitate
the understanding of the structure of the web. Furthermore, word-adjacency networks are analysed
so that each vertex represented a single word, and each edge represented a connection between the
two words that have followed one another in the text. The results obtained for different texts in
different languages (English, French, Spanish and Japanese) are similar. Significant triads are from
ID3#1 to ID3#6 (considering the IDs in [52]), and underrepresented are all other triads, from the
ID3#7 to ID3#13. This means that the examined languages do not have a transitive relation such as
the WWW. The explanation for these results may be in the structure of language, where words are
divided into categories and generally the rule is that a word from one category follows a word from
the other category. As an example, most connected category words are prepositions and behind
them usually follows a noun or an article. Biemann at al. [2] use motifs to quantify the differences
between a natural and a generated language. The frequencies of three-vertex and four-vertex motifs
for six languages are compared with artificially generated language from n-grams. An n-gram
is contiguous sequence of n units (words) reflecting the statistical properties of a given text (or
speech). The authors show that the four-vertex motifs can be interpreted by semantic relations of
polysemy and synonymy of words.

Figure 5.1: Superfamilies of complex networks according to the triad significance profile [52].

Our motivation for this research was to determine whether the local structure of the Croatian
language networks share the same properties as other language networks. Croatian is a highly
flective Slavic language and words can have seven different cases for singular and seven for plural,
genders and numbers. The Croatian word order is mostly free, especially in non-formal writing.
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These features position Croatian among morphologically rich and free word-order languages.
So far Croatian has been quantified in a complex networks framework based on the word co-
occurrences [14, 18] and compared with shuffled counterparts [21, 50].

In this Chapter we describe the network motifs analysis of the co-occurrence directed networks
constructed from the Croatian texts: four books and one forum. We use an approach based on the
significance profile (SP) presented in [51]. We analyse three-vertex subgraphs called triads and
present the results of triad significance profile (T SP) for the five analysed networks and we compare
our results with T SP for other languages.

In the Section 5.3 we give an overview of network motifs. In the Section 5.4 we describe the
experiment, and the Section 5.5. presents the results. We conclude with some finishing remarks
and the plans for future work.

5.3 Network Motifs

A network motif is a small subgraph that appears more frequently in the real network than in
the random network. The motif may be referred to as a significantly overrepresented subgraph
in the network. As well, an underrepresented subgraph in the network is called an anti-motif.
In [51] authors define network motifs as small patterns for which the probability of occurrence in a
randomized network is less than the probability of occurrence in the real network with the cut-off
value equal to 0.01. In Figure 5.2 are all 13 possible three-vertex connected directed subgraphs
(triads). The triad ID notation in this work is preserving the same notation as on the Figure 5.2 and
it is the notation according to [52]. In Figure 5.3 are all 199 possible four-vertex connected directed
subgraphs.

Figure 5.2: All 13 types of three-vertex connected subgraphs.

Now, we will give the mathematical description of the motif in the graph or network G. There
are two graphs (networks) H and G with non-empty sets of: vertices, edges and incidence relation.
Let H be the real subgraph of G,H ⊂ G. The number of occurrences of graph H in graph G,
we define as the frequency of H in G, written like FH(G). Some graph is frequent in G if its
frequency in G is higher than cut-off value. Let Ω(G) be a family of randomized graphs of G
(randomized graph has the same number of vertices and same degree sequence [51]). Now we
choose n random graphs from Ω(G) uniformly, R(G). Then we find out the frequency of the certain
frequent sub-graph H in G. If the frequency of H in G is higher than its arithmetic mean frequency
in n random graphs Ri, where 1≤ i≤ n, we call this sample significant and H is network motif for
G. Besides the frequency, motifs can be detected by using probabilities. The p− value of the motif
is the number of random networks in which a particular motif appeared more frequently than in
the original network, divided by the total number of generated random networks. Obviously, the
p-value is between 0 and 1. The smaller the p-value of the motif is, the more significant the motif
is. Another measure for motif detection is a Z-score . The Z-score for the subgraph H in G can be
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Figure 5.3: Four-vertex connected and directed subgraphs.

calculated using the equation:

Z(H) =
FG(H)−µR(H)

σR(H)
(5.1)

where µR(H) is the mean and σR(H) is the standard deviation of frequencies of H in the set
of random graphs of G, R(G). The higher the Z-score is, the more significant a detected motif is.
Using eq. 1, for each subgraph i, we can calculate the statistical significance which is described as
Z-score, Zi. Furthermore, the SP is the vector of Z-scores normalised to length 1:

SPi =
zi√
∑i z2

i

. (5.2)

5.4 Experiment

5.4.1 Datasets and Networks Construction
In our study, we examined five literary works. Our dataset contains five different texts; four books:
Mama Leone (ML), The Return of Philip Latinowicz (PL), The Picture of Dorian Gray, (DG),
Bones, (BO) and one forum Narodne novine (NN). All the books were written in or have been
translated into Croatian. The web forum is selected as a representative of a different text genre
in order to verify whether the observed properties are also valid for more relaxed genres besides
those strictly for the literature. The datasets are different in the size as well as in the size of the
vocabulary (Table 1).

The texts were cleared of the index of contents, the authors’ biographies and page numbers.
Then we constructed directed co-occurrence networks (word-adjacency networks) in a way that
each word represents a vertex, and the two words that follow one another establish the edge.

5.4.2 Network Motifs Analysis
To analyse the motifs in networks we used the FANMOD tool [55]. FANMOD can search for
motifs of three to eight vertices sizes using the rand-esu algorithm [20], which is much faster than
similar tools, and the advantage is that it has a simple graphical interface and it is very intuitive to
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Dataset Number of words Number of vertices (N) Number of edges (K)
ML 86,043 12,416 52,012
PL 28,301 9,166 22,344
DG 75,142 14,120 47,823
BO 199,188 25,020 106,999
NN 146,731 13,036 55,661

Table 5.1: The statistics for the corpus of 10 books.

use. The first step is the preparation of the input data: conversion of words to integers, where every
number represents one vertex uniquely in the network, hence two integers in a line form an edge.
Every line must contain at least two integers and a maximum of up to five integers. FANMOD
provides the possibility to choose whether the networks have directed, undirected or coloured edges
or vertices. We used directed uncoloured networks. The algorithm options frame must be adjusted
prior to running the algorithm itself. The options’ frame includes: the set of the subgraph size and
the setting of the switch between full enumeration and enumeration on a few samples. Motifs are
identified through the comparison of frequencies in the original network and those in a random
network so it is important to determine the number of random networks. It can be set up in the
random networks frame in the box named ’Number of networks’. The default value for this is 1,000
networks but it can be increased if necessary. In this frame there are some important parameters:
the parameter ’exchanges per edge’ (showing how many times the program goes through the edges)
should be increased only if our results (output after the first reading) for a random network are
very similar to the results for the original network. The parameter ’exchange attempts’ - if in the
results there appears a small number of successful replacements, then we need to increase it, but
it is important to bear in mind that if we have a few successful replacements it may mean that
something is wrong with the network. FANMOD produces results in terms of: Z-scores, p-values
and frequencies. When we analyse the results, it is desirable to obtain as much as possible undefined
Z-scores. If we have a lot of undefined Z-scores, it is not possible to determine which motif is
significant (because the greater the Z-score is, the greater significance of this motif is). So if we
have a lot of undefined Z-scores we have to increase the number of random networks, which will
slow down the algorithm. In the output file format is advisable to include an ASCII - text option
for the easier reading of the results, and in HTML format for the presentation of the results. We
calculate Z-scores for all triads in all five networks using FANMOD. After that we calculate T SP
according to the Eq. 5.2.
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5.5 Results
The frequencies of all possible triads for five networks are presented in Figure 5.4. In general,
the triad frequencies behave similarly for all five networks. Therefore the Croatian language is
comparable with other languages [2, 52]. Still, it is possible to identify differences between data
source on ID3#1 and ID3#5 on the linear scale and ID3#9, ID3#11 and ID3#13 on the logarithmic
scale.

Figure 5.4: The frequencies of the triads for 5 datasets presented on the linear scale (left) and on
the logarithmic scale (right).

Furthermore, we analyse T SP in order to detect which triads are significantly overrepresented
(motifs) and which triads are significantly underrepresented (anti-motifs) and to compare it across
the five different datasets. The results are presented in the diagram shown in the Figure 5.5.

Figure 5.5: Triad significance profile for 5 datasets.

There are several significantly overrepresented triads (ID3#1, ID3#3, ID3#10 and ID3#13).
Triads with two edges (ID3#1 and ID3#3) are, based on the other reported results [2, 52], expected
to be overrepresented in language networks. However, in our results, triads ID3#10 and ID3#13
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are not likely to be overrepresented in language. It seems that this is inherent to languages with a
free word-order such as Croatian. For example for three vertices of words: jako (much), ga (him),
voli (loves); in Croatian language it is possible to have all six pairs of words (even triplets) as it is
shown in Figure 5.6. In opposite, in English language is impossible to have ’him loves’ as a part of
the sentence.

Figure 5.6: An example of the triad with ID3#13 in Croatian language.

5.6 Conclusion
In this Chapter we present the results of the network motifs analysis of Croatian literature. Motifs
are used to detect structural similarities between directed networks of four books and one forum.
We analyse triad significance profile in five different texts represented as directed co-occurrence
networks. The results show that Croatian language networks have similar triad significance profiles
with other already analysed languages. Generally, in all language networks triads with two edges
are overrepresented, while triads with three edges are underrepresented. For the Croatian language,
there is an exception with three-edge triads ID3#10 and ID3#13 which are overrepresented. The
overrepresentation of three-edge triads is caused by the free word-order nature of Croatian language.
It seems that motif-based analysis of the language networks is sensitive to the word order and syntax
rules. And maybe it is possible to use it for the fine-grained differentiation of languages. Therefore,
we will perform motif-based analysis of language networks for different languages. We will also
include syntax networks and sub-word level networks (syllable networks, grapheme networks) in
the analysis. Finally we plan to analyse the presence of the four-vertex motifs in language networks
in order to see if they can be interpreted by the semantic relations in the polysemy and synonymy
of words.





6. LaNCoA: A Python Toolkit for Language
Networks Construction and Analysis

6.1 Abstract

In this Chapter we describe LaNCoA, Language Networks Construction and Analysis toolkit
implemented in Python. The toolkit provides various procedures for network construction from the
text: on the word-level (co-occurrence networks, syntactic networks, shuffled networks), and on the
subword-level (syllable networks, grapheme networks). Furthermore, we implement functions for
the language networks analysis on the global and local level. The toolkit is organized in several
modules that enable various aspects of language analysis: analysis of global network measures
for different co-occurrence window, comparison of networks based on original and shuffled texts,
comparison of networks constructed on different language levels, etc. Text manipulation methods,
like corpora cleaning, lemmatization and stopwords removal, are also implemented. For the basic
network representation we use available NetworkX functions and methods. However, language
network analysis is specific and it requires implementation of additional functions and methods.
That was the main motivation for this research.

6.2 Introduction

The study of graphs and networks plays an important role in various research domains. The
advent of the computer age increased the interest in the large real-world networks that are studied
as complex networks. These networks exhibit specific topological properties (high clustering
coefficient, small diameter, community structure, one or several giant components, hierarchical
structure, heavy tail degree distribution, etc.). Various classes of complex networks have been
analyzed, such as for example: technological networks, biological network, information networks
or social networks [67]. One possible class includes language networks as well.

Various construction rules may be applied in order to construct a network from the text.
The usual way is to construct networks of word co-occurrences [6, 10, 11, 18, 22] or syntactic
networks [6, 17, 23, 24, 56, 60, 61]. There are also experiments with shuffled (randomized) networks
[4, 11, 15, 17, 19]. Furthermore, syllables networks [31], phoneme networks [26] or semantic
networks [3] can be constructed as well. Additionally all these networks can be constructed as
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undirected or directed, unweighted or weighted. In most cases the best way to represent the text
is to chose directed and weighted variant of the network [18]. There are various software, tools
and packages designed and developed for the task of complex networks analysis: Gephi [29],
NodeXL [63], SNAP [57], Cytoscape [70], NetworkX package [8] for Python, igraph package [62]
for C, Python and R. All these tools enable calculating standard global network measures (such
as average clustering coefficient, average shortest path length, diameter, average degree, degree
distribution, density, modularity, assortativity, etc.) and the local network measures (different
centrality measures: degree, betwenness, closeness, eigenvector, etc.). Some of the tools (for
example Gephi, NewtorkX, iGraph, SNAP) provide network analysis on the meso-scale level with
implemented algorithms for community detection. Also there are some tools designed and focused
only on one aspect of the network analysis, for example GraphCrunch [64] for graphlet analysis,
GRAAL [66] for graph and network alignment or FANMOD [54] for motif analysis.

However, there is no software specialized for tasks of language network construction and
analysis. Our main motivation was to implement a simple toolkit that provides various language
network construction possibilities and suitable network analysis functions. Furthermore this toolkit
can be used for various NLP applications, such as for example keyword extraction task [58, 59, 72]
or text type classification [65].

The LaNCoA toolkit is focused mainly on the language networks construction task which
includes various methods for the corpora manipulation (text preprocessing and cleaning, lemma-
tization indexlemmatization, shuffling procedures and preparation for the language networks
construction ) and procedures for generation of various word-level and subword-level networks
directly from the given corpora. The toolkit also enables complex network analysis in terms of
calculating all important global and local network measures , network and text content analysis, and
various plotting data possibilities. To some extent, the LaNCoA toolkit uses existing functions from
the NetworkX Python package as a basic foundation for some more specific network construction
and analysis tasks. Furthermore, there are some measures important for weighted and directed
networks that are not implemented in the standard network-manipulation packages which are
therefore implemented in the LaNCoA toolkit, such as the selectivity measure, network reciprocity ,
network entropy , inverse participation ratio , and link overlap measures.

The Chapter 6 is structured as follows. In Section 6.3 we describe the language networks. In
Section 6.4 we give a short overview of the complex networks analysis task. Then we present the
LaNCoA toolkit in Section 6.5 and we describe LaNCoA toolkit applications in Section 6.6. We
give a conclusion remarks in Section 6.7.

6.3 Complex Network Analysis Task

A complex network is modeled as a graph G. A graph G = (V,E) consists of a collection of vertices,
or vertex set, V and a collection of edges, or edge set, E. In the complex network approach vertices
are called nodes and edges are called links. The study of networks can be classified in three levels:
global (macro-scale) level, meso-scale level and local (micro-scale) level.

The study at the macro level attempts to understand the global structure of a network. At this
level, relevant parameters are average degree, degree distribution, average path length, average
clustering coefficient, density, modularity, assortativity, etc. An the meso-scale level the interaction
between nodes at short distances are studied. This includes community detection or analysis
of small subgraphs such as motifs or graphlets . At the micro level the study is focused on the
behavior of single nodes. Identification of the important nodes in the network using different
centrality measures or just deterring degree, strength, clustering coefficient or betweenness and
other parameters of a single node . In [67] a detailed overview of all network measures and formulas
is given.
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6.4 Language Networks

Written, as well as spoken language can be modeled via complex networks where the lingual
units (e.g. words) are represented by vertices and their linguistic interactions by links. Language
networks are a powerful formalism to the quantitative study of language structure at various
language sublevels . Complex network analysis provides mechanisms that can reveal new patterns
in complex structure and can thus be applied to the study of patterns that occur in the natural
languages. Thus, complex network analysis may contribute to a better understanding of the
organization, structure and evolution of a language.

On the word-level, text can be represented as a complex network of linked words: each
individual word is a node and interactions amongst words are links [6]. The interactions can be
derived at different levels: structure, semantics, dependencies, etc. On the subword-level, syllable or
grapheme networks can be constructed, where nodes can be represented by syllables or graphemes,
while their dependencies (e.g. positions of syllables within words or graphemes within syllables)
are links [31].

The properties of the co-occurrence networks are derived from the word order in texts [6,10,11,
18, 22]. Commonly they rise from the simple criterion such as co-occurrence of two words within
a sentence, or text; or as co-occurrence of words within the given co-occurrence window. In the
networks where the linkage is limited to the sentence borders during the construction, the sentence
boundary can be considered as the window boundary too.

The syntactic networks are constructed using syntactic dependencies relations. Syntactic depen-
dencies between words are formally expressed by dependency grammar (e.g. set of productions
(rules) in a form of a grammar). The dependency grammar is used to present the syntactic relation-
ships from sentence in a form of syntactic dependency tree. The properties of the syntactic networks
are analyzed in [6, 17, 23, 24, 56, 60, 61]. The results suggests that modelling human language using
syntactic networks is important for language analysis because not all of the properties of the text
structure are captured within co-occurrence networks.

For the purpose of better understanding of the language structure, one approach to address the
questions of the word order in the language is to compare networks constructed from normal texts
with the networks from randomized or shuffled texts [4, 11, 15, 17, 19]. Networks constructed from
such shuffled texts are commonly regarded as shuffled networks .

Syllable and grapheme networks are important for studying structure of a language at the
subword-level. In the syllable networks , nodes are represented by syllables and a link between
two syllables can be established if they belong to the same word or if they are neighbors in the
word. [31]. The same principle applies to the grapheme networks , where two graphemes are linked
if they co-occurre as neighbors within a word or a syllable.

Figure 1 present different construction rules for stated language network types.

6.5 The LaNCoA Toolkit Overview

LaNCoA is free and open source software licensed under the General Public License version 2.
The source code of a working version is available for download from the official GitHub repository
at https://github.com/domargan/LaNCoA.

All of the LaNCoA functionalities work for any of the languages written in any set of graphemes
based on the letters of the classical Latin alphabet (Latin script). Only Latin script languages are
supported (commonly used by about 70% of the world’s population).

The LaNCoA toolkit is implemented in Python programming language. Python is an excellent
tool for scanning and manipulating textual data and also provides various packages and libraries
for scientific computations and data visualization. One of those is the popular NetworkX package,
designed for exploration and analysis of complex networks and network algorithms. Our goal was
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Figure 6.1: Language networks construction rules presented on one toy-example sentence "The
conventions can vary.": (A) Co-occurrence network, (B) Syntactic dependency network, (C)
Shuffled network, (D) Syllable network.

to utilize basic NetworkX functions to develop extra procedures suitable for language network
construction and analysis. We have also implemented functions for calculation of some non-
standard general complex network measures. We have based our plotting procedures on proven
quality matplotlib library for producing visualization figures.

Toolkit is divided into six modules that enable various aspects of language and text corpora
analysis: i) corpora manipulation, ii) language networks generation, iii) single language network
analysis, iv) multiplex language networks analysis, v) content analysis, and vi) data plotting.
Modules are grouped into two main parts: network construction and network analysis. Modules
provide procedures for tasks such as corpora cleaning, utilization of different network construction
principles, analysis of global and local network properties, comparison of networks based on
original and shuffled corpora, comparison of networks constructed on different language levels, etc.
The generalized architectural structure of our toolkit is visualized and presented in Figure 6.2. In
this Section we describe each module’s function individually.

6.5.1 Network Construction
Network construction part of our toolkit consists of two modules: the corpora manipulation module
and the network generation module.

Corpora Manipulation Module
Corpora manipulation module can be used for several tasks with focus on various functions used to
manipulate textual corpora. All of the tasks are optional and can be performed independently by
the user’s choice. Implemented LaNCoA functions are the following:

Corpus cleaning and Unicode normalization
It is important to have clean and high quality corpus before the process of the network generation,
so the user can utilize LaNCoA to clean the corpus from the unwanted characters or data . LaNCoA
also supports the usage of unclear and “dirty” textual data, but the noise-cleaning of the corpus
is recommended, since it can greatly reduce the risks of badly constructed networks or network
pollution. All UTF-8 characters which are not defined as letters or numbers of the classical Latin
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Figure 6.2: LaNCoA architecture.

alphabet can be removed from the textual corpus . On the other hand, any set of those UTF-8
characters (or all of them) can be kept (preserved) in the text by users’ choice. In addition, the
NFKD unicode normalization [73,74] of all Latin script letters can optionally be performed directly
in the process of corpus cleaning. Compatibility decomposition replaces the code points of a base
letter into a single precomposed letter. For example, unicode letters ‘ć’ or ‘š’ can be normalized
into ‘c’ and ‘s’ characters.

Removal of stopwords from a corpus
Stopwords are a list of the most common, short function words which do not carry strong semantic
properties, but are needed for the syntax of language (pronouns, prepositions, conjunctions, abbrevi-
ations, interjections,...). Examples of stopwords are: ‘is’, ‘but’, ‘and’, ‘which’, ‘on’, ‘any’, ‘some’.
Stopwords from any language based on the Latin script can be removed by providing adequate text
file containing the list of stopwords .

Lemmatization of a corpus
Lemmatization is the process by which single words are reconducted to their citational form.
For instance the word ‘networks’ is converted into its standard form ‘network’. Lemmatization,
along with the morphological analysis, is the foundation of all the processes involved in language
normalization. Lemmatization can be performed for any language based on the Latin script by
providing adequate text file containing the list of all word form-lemma pairs, since the lemmatization
in LaNCoA is based on the find-and-replace principle .

Text shuffling
Co-occurrence complex networks properties are derived from the word order in texts. Commonly,
the shuffling procedure randomizes the words in the text, transforming the text into the meaningless
form. Shuffling procedures destroy the sentence and text organization in a way that the standard
word-order and syntax of the text is eradicated. As expected, the typical word collocations and
phrases are completely lost, as well as the forms of the morphological structures and local structures
of words’ neighborhood. We implemented two different shuffling principles: shuffling on the
sentence level and shuffling on the whole text level. The vocabulary size, word and sentence
frequency distributions stay preserved in both shuffling procedures. Additionally, in the sentence
level shuffling approach, the sentence structure of the text and the number of words per sentence are
also preserved . In the text-level shuffling, the original text is randomized by shuffling the words
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and punctuation marks over the whole text. This approach also changes the number of words per
sentence.

Network Generation Module

LaNCoA’s network generation module can be used for the generation of complex language networks
directly from corpora or from other language networks. It can be used for several independent
tasks of building networks on word and subword-level Networks can be generated as weighted or
unweighted, as well as directed or undirected . All generated networks can be saved for later use in
the standard edgelist file format . Implemented functions are the following:

Co-occurrence networks generation
The co-occurrence window mn of size n is defined as a set of n subsequent words from a text. Within
a window the links are established between the first word and n−1 subsequent words. Words are
also linked according to the optional usage of specified delimiters (e.g. punctuation marks). In the
networks where the linkage is limited to the sentence borders during the construction, the sentence
boundary is then the window boundary too. In the networks without delimiters, words are linked
within a given co-occurrence window regardless of being in different sentences. Standard approach
is to limit the co-occurrence window size within the sentence delimiters, but a user may or may
not specify any type of delimiters (any UTF-8 character). The weight of the link between two
nodes is proportional to the overall co-occurrence frequencies of the corresponding words within a
co-occurrence window. Co-occurrence networks can be generated directly from the raw text data
that does not necessary conform to rules of grammar or orthography. Three steps in the network
construction for a sentence of 6 words, with usage of the delimiters, for the co-occurrence window
sizes n = 2 and n = 6 are shown in Figure 3.

Figure 6.3: An illustration of 3 steps in a network construction with a co-occurrence window mn of
sizes n = 2, and n = 6. w1...w6 are words within a sentence.

Syntactic networks generation
The syntactic structure of language is captured through syntactic dependency relations between
pair of words in a sentence : the head word – the governor of relationship and the dependent
word - the modifier. Syntactic dependencies between words are formally expressed by dependency
grammar which is used to represent the syntactic relationships from sentence in a form of syntactic
dependency tree. The sentences boundaries are preserved, since the syntactic dependency is inherent
to the sentence. The weight of the link between two nodes is proportional to the overall frequencies
of the corresponding words within a syntactic dependency tree. User must provide a corpus in a
form of syntactic dependency treebank file written in the CoNLL-X format.

Syllable and grapheme networks generation
The syllable networks are constructed from the co-occurrence of syllables within words. Syllable
list is obtained from the dictionary file already containing syllabified words . The weight of the
link between two syllables is proportional to the overall frequencies of the corresponding syllables
co-occurring within words from a text. Syllable networks can be generated directly from the raw
text corpora. The structure of grapheme networks depends on a existing network of syllables. Two
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graphemes are linked if they co-occur as neighbours within a syllable. The weight of the link
between two graphemes is proportional to the overall frequencies of the corresponding graphemes
co-occurring within syllables from a syllable network .

Word-list subnetwork and word-ego subnetwork generation
Two types of word-level subnetworks can be generated from existing co-occurrence or syntactic
networks: word-list network and word-ego network . Word-list network is a simple subnetwork
based on a provided list of words. Specified nodes (words) and corresponding links between them
are extracted from the original network. Word-ego network is a subnetwork of neighbors centered
at one specified node (word) within a given radius. These subword-level networks can be generated
to examine the networks of semantic importance, word’s predecessors, successors, or entire word
neighborhood of keywords within a given radius.

6.5.2 Network Analysis
Network analysis part of the LaNCoA toolkit consists of four modules: single network analysis
module, multiplex network analysis module, content analysis module and data plotting module.

Single network analysis module
Single network properties can be analyzed on global and local scale. LaNCoA uses some calculation
methods implemented in the NetworkX Python package. These include standard basic network
features, for e.g., the average path length, diameter and radius, global and local clustering coefficient,
network transitivity, and network density. In addition to NetworkX’s procedures used for calculation
of classic network properties, LaNCoA provides several other procedures for calculation of non-
standard network measures, such as selectivity and inverse participation ratio (both available for
directed and undirected networks), calculation of network entropy based on the degree, strength,
selectivity and inverse participation distributions, and network reciprocity.

Multiplex network analysis module
LaNCoA provides some simple functions for analysis of multiplex networks . Multiplex network
is network in layers, and with connections between layers; the interconnections between layers
are only between a node and its counterpart in the other layer (the same node) . This module
enables overlap analysis of two different separated networks consisted of the same sets of nodes.
Implemented functions, for example, enable calculation of the Jaccard distance of two different
networks, as well as the total and total weighted link overlap measures .

Content analysis module
Content analysis implies the examination of the text corpora’s content (e.g. role of the individual
words) by using the complex network environment. This module provides several ways of text
analysis by calculating simple network statistics, such as the top n words, syllables or graphemes
with the largest number of different individual neighbors, calculation of the most frequent word-pair
relations, the distance between given words in the network environment, or calculation of the
centrality measures for all of the words within a corpus.

Data plotting module
LaNCoA provides functions for plotting of the network’s data by utilizing the methods from
the matplotlib Python library. Users can generate various 2D figures based on the calculated
network measures. Such figures include rank plots for the directed (in- and out-) or undirected
degree, strength and selectivity distribution values of multiple networks on the same scale, as
well as the degree, strength and selectivity histograms and scatter plots. It is also possible to
generate the plots describing the dynamic growth of a network regarding the number of connected
components, presenting the ratio of newly ‘read’ unique words (or syllables or graphemes) and
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the corresponding number of components in a given point of time in the process of co-occurrence
network construction.

6.6 The LaNCoA Toolkit Applications
We have used the LaNCoA toolkit in several of our experiments where we have worked with the
language networks.

In [18] we presented the results of our first experiment with the Croatian co-occurrence language
networks. In this experiment we constructed 30 different co-occurrence networks, weighted and
directed, from the corpus of literature, containing 10 books written in or translated into the Croatian
language. We examined the change of network structure properties by systematically varying the
co-occurrence window sizes, the corpus sizes and removing stopwords. We used the LaNCoA
toolkit for all these network construction tasks.

In [14] we compared Croatian, English and Italian language networks based on the same five
books. We performed lemmatized and non-lemmatized network construction with and without
stopwords using the LaNCoA toolkit.

In another experiment [21] we addressed the problem of Croatian text complexity by construct-
ing the linguistic co-occurrence networks form normal texts and shuffled text. In this experiment we
have tested whether complex network measures can differentiate between normal and shuffled texts.
We employed various methods from the LaNCoA toolkit for calculating the network measures and
generating various plots in order to find the differences between two classes of networks. In [50] we
extended this research by introducing additional shuffling procedure: the sentence-level shuffling
procedure and by introducing a node selectivity as a new complex network measure. All shuffling
procedures and network construction tasks were performed with the LaNCoA toolkit.

Furthermore, we used the LaNCoA toolkit for various experiments with the selectivity measure.
In [71] we compared language networks from Croatian literature and blogs. In [58, 59, 72] we
analysed the potential of the selectivity measure for the keyword extraction task. We also used the
LaNCoA toolkit for the Croatian language networks construction for the purposes of the network
motif analysis of Croatian literature performed in [69]. In [65] we used methods from the LaNCoA
toolkit to generate 150 different weighted and directed networks and to calculate local and global
network measures used in the task of text classification.

6.7 Conclusion
In this Chapter we presented an overview of the LaNCoA toolkit for language networks construction
and analysis. Currently, its basic functionalities rely on the corpora manipulation and language
network construction methods implemented in the two separate modules. Another set of modules
provide methods for the network analysis task. These modules employ some of the basic methods
that already exists in the NetworkX package. However there is a set of functions for the network
analysis not covered by the standard network-manipulation packages. Among them are certain
functions that deals with the measures for the weighted and directed networks. These functions are
of special interest for the language networks analysis and we implemented them in our toolkit.

The LaNCoA toolkit is in the early stage of development and there is still place for major
improvements, especially in the network analysis tasks suited for the language networks. However,
we managed to use this toolkit successfully in all of the language network experiments that we
performed. For the future work, we plan to implement simple and robust user interface. In addition,
we would like to develop some more specific language-oriented network analysis functions and
also make improvements in the existing code whenever it is possible.
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7. An Overview of Graph-Based Keyword
Extraction Methods and Approaches

7.1 Abstract

The Chapter surveys methods and approaches for the task of keyword extraction. The systematic
review of methods was gathered which resulted in a comprehensive review of existing approaches.
Work related to keyword extraction is elaborated for supervised and unsupervised methods, with a
special emphasis on graph-based methods. Various graph-based methods are analyzed and com-
pared. The Chapter provides guidelines for future research plans and encourages the development
of new graph-based approaches for keyword extraction.

7.2 Introduction

Keyword extraction (KE) is tasked with the automatic identification of a set of the terms that best
describe the subject of a document [75, 79, 80, 87, 96, 99, 106, 110, 122, 132]. Different terminology
for defining the terms that represent the most relevant information contained in the document is
used: key phrases, key segments, key terms or just keywords . All listed variants have the same
function - to characterize the topics discussed in a document [110]. Extracting a small set of units,
composed of one or more terms, from a single document is an important problem in Text Mining
(TM), Information Retrieval (IR) and Natural Language Processing (NLP).

Keywords are widely used to enable queries within IR systems as they are easy to define, revise,
remember, and share. Keywords are independent of any corpus and can be applied across multiple
corpora and IR systems [79]. Keywords have also been applied to improve the functionality of IR
systems [79, 84]. In other words, relevant extracted keywords can be used to build an automatic
index for a document collection or alternatively they can be used for document representation in
categorization or classification tasks [99, 110]. An extractive summary of the document is also the
task of many IR and NLP applications and includes automatic indexing, automatic summarization,
document management, high-level semantic description, text, document or website categorization
or clustering, cross-category retrieval, constructing domain-specific dictionaries, name entity
recognition, topic detection, tracking, etc. [79, 92, 103, 111, 125].
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While assigning keywords to documents manually is a very costly, time consuming and tedious
task, in addition to which, the number of digitally available documents is growing, automatic
keyword extraction has attracted the interest of researchers over the last years. Although the
keyword extraction applications usually work on single documents, keyword extraction is also used
for a more complex task (i.e. keyword extraction for the whole collection [126], the entire web
site or for automatic web summarization [131]) . With the appearance of big-data, constructing
an effective model for text representation becomes even more urgent and demanding at the same
time [100]. State-of-the-art techniques for KE encounter scalability and sparsity problems. In
order to circumvent these limitations, new solutions are constantly being proposed. This work
presents a comprehensive overview of the common techniques and methods with the emphasis on
new graph-based methods, especially regarding keyword extraction for the Croatian language. We
systematize the existing state-of-the-art keyword extraction methods and approaches as well as new
graph-based methods that are based on the foundations of graph theory. Additionally, the paper
explores the advantages of graph-based methods over traditional supervised methods.

The Chapter is organized as follows: firstly, we systematize keyword extraction methods;
secondly, we present a brief overview of various measures for network (graph) analysis; thirdly, we
describe related work for supervised and unsupervised methods, with special emphasis on graph-
based keyword extraction; fourthly, we compare graph-based measures of experiments extracting
keywords from Croatian News articles; and finally, we conclude with some remarks regarding
network-enabled extraction and turn to brief guidelines for future research.

7.3 Systematization of Methods

Keyword assignment methods can be divided roughly into two categories: (1) keyword assignment
and (2) keyword extraction [86, 102, 121, 125] as presented in Figure 7.1 . Both revolve around
the same problem - selecting the best keyword. In keyword assignment, keywords are chosen
from a controlled vocabulary of terms or predefined taxonomy, and documents are categorized into
classes according to their content. Keyword extraction enriches a document with keywords that
are explicitly mentioned in text [107]. Words that occurred in the document are analyzed in order
to identify the most representative ones, usually exploring the source properties (i.e. frequency,
length) [129]. Commonly, keyword extraction does not use a predefined thesaurus to determine the
keywords .

Figure 7.1: Classification of keyword extraction methods.

The scope of this work is calibrated only on keyword extraction methods. Existing methods for
automatic keyword extraction can be according to Ping-I and Shi-Jen [82] divided roughly into:
• Statistical Approaches and
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• Machine Learning Approaches,
or slightly more detailed in the four categories according to Zhang et al. [129]:
• Simple Statistical Approaches,
• Linguistic Approaches,
• Machine Learning Approaches and
• Other Approaches.
Simple Statistical Approaches comprise of simple methods which do not require the training

data. In addition, these methods are language and domain-independent. Commonly, the statistics of
the words from a document can be used to identify keywords: n-gram statistics, word frequency, TF-
IDF (term frequency-inverse document frequency model, word co-occurrences, PAT Tree (Patricia
Tree; a suffix tree or position tree), etc. The disadvantage is that in some professional texts, such
as from the health and medical domain, the most important keyword may appear only once in the
article (e.g. diagnosis). The use of statistically empowered models may inadvertently filter out
these words [82].

Linguistic Approaches use the linguistic properties of the words, sentences and documents.
Lexical, syntactic, semantic and discourse analysis are some of the most commonly examined
properties, although they are demanding and complex NLP problems.

Machine Learning Approaches consider supervised or unsupervised learning from the exam-
ples, but related work on keyword extraction prefers the supervised approach. Supervised machine
learning approaches induce a model which is trained on a set of keywords. They require manual an-
notations of the learning dataset which is extremely tedious and inconsistent (sometimes requesting
predefined taxonomy). Unfortunately, authors usually assign keywords to their documents only
when they are compelled to do so. The model can be induced using one of the machine learning
algorithms: Naïve Bayes, SVM (Support Vector Machines), C4.5, etc. Thus, supervised methods
require training data, and are often dependent on the domain. A system needs to re-learn and
establish the model every time when a domain changes [94, 115]. Model induction itself can also
be demanding and time consuming on massive datasets .

Other Approaches for keyword extraction in general combine all the methods mentioned
above. Additionally, sometimes for fusion they incorporate heuristic knowledge, such as the
position, the length, the layout features of the terms, html and similar tags, the text formatting
information etc.

Vector space model(VSM) is well-known and is the most used model for text representation in
text mining approaches [78, 86, 90] . Specifically, the documents represented in the form of feature
vectors are located in a multidimensional Euclidean space . This model is suitable for capturing
simple word frequency, however structural and semantic information are usually disregarded. Due
to its simplicity VSM has several disadvantages [116]:
• the meaning of a text and structure cannot be expressed explicitly,
• each word is independent from other, word appearance sequences or other relations are

disregarded,
• if two documents have a similar meaning expressed with different words, similarity cannot

be computed easily.
Graph-based text representation efficiently addresses these problems [116]. A graph is a

mathematical model, which enables the exploration of the relationships and structural information
very effectively . More about the graph representations of text is discussed in Section 3, and
in [22,59,105,116,124]. For now, in short, document is modelled as graph where terms (words) are
represented by vertices (nodes) and their relations are represented by edges (links). The taxonomy
of the graph-enabled keyword extraction methods is presented in Figure 7.4.

The edge relation between words can be established on many principles exploiting different
scopes of the text or relations among words for the graph’s construction [105, 116]:
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• co-occurrence relations - connecting neighboring words co-occurring within the window of
a fixed size in text; or connecting all words co-occurring together in a sentence, paragraph,
section or document (adding them to the graph as a clique1);
• syntax relations - connecting words according to their relations in the syntax dependency

graph;
• semantic relations - connecting words that have similar meanings, words spelled the same

way but have different meanings, synonyms, antonyms, homonyms, etc;
• other possible relations - for example, intersecting words from a sentence, paragraph, section

or document, etc.
There are various possibilities for the analysis of a network structure (topology) and we will focus on
the most common - network structure of the linguistic elements themselves using various relations:
semantic, pragmatic, syntax, morphology, phonetic and phonology. More precisely, in this work we
narrow the scope of the study to (1) co-occurrence [3], (2) syntactic [17], (3) semantic [124] and
(4) similarity networks [105].

7.3.1 Graph Types
The formal definition of a graph according to graph theory is given in Section 3. Here we broadly
discuss the classification of a graph-based method which can be established on the (1) vertices or
(2) edges [105].

In vertex representation models, vertices represent advanced concepts which can be atomic
(one component; also called homogenous) or multiple (more than two components; also called
heterogeneous). The homogeneous graph model is usually used for the representation of gram-
matical associations between words or semantic similarities [81, 98]. Additionally, vertices can
also be weighted or unweighted which conditions the representation model, which is respectively
(1) weighted or (2) unweighted graph. Weighted vertices in this case commonly indicate the
importance of the vertex in the graph, and different measures (explained in Section 3) are used to
calculate the importance of the vertex. The measures and algorithms listed in Table 1, very often
take into account the number of edges, the weight of vertices which are connected by the edge, etc.

Between two vertices, relationships can be established by edges. In edge representation models
(graphs) graphs can be either (1) directed (called digraph, e.g. for word order in text) or (2)
undirected (for connecting related words). Edges can also be (1) weighted or (2) unweighted,
depending on relationships between vertices. In a language complex network, weight could be the
distance of two words in paragraphs or text or the frequency of word pairs’ co-occurrence. Beside
weights, edge models can be (1) labeled or (2) unlabeled. It is almost conventional to explain the
relationships or rules between related vertices by the edge label in many graph models in computer
science (e.g. Entity-Relationship). In related work of graphs in the language’s edge label can denote
POS (part of speech), grammatical rule of word, etc.

There are also more complex models that are represented by combinations of the previously
described models or parts of their structure. These are: (1) multigraphs - this model allows
a connection with a plurality of different edges, and also a vertex connection with itself, (2)
hipergraph - one connection can be established with any number of vertices; edges are not binary
relations, (3) multiplex - a multilayer graph which shares the same vertices at all levels, and has
edges between levels that are achieved by connecting only the same vertices.

An example of such a model is the multiplex of many realizations of the same text, always
containing the same set of words interlinked with different edges: as direct neighbors, co-occurrence
in the sentence, syntax dependencies, etc.

The classifications of graph types with all previous described features are shown in Figure 7.2
according to concepts, weight, direction or label for a vertex or edge representation model. The

1Clique is a subgraph of a graph in which every two vertices are connected (a subgraph which is a complete graph).
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classifications of advanced graph models are shown in Figure 7.3.

Figure 7.2: Classification of graph types.

Figure 7.3: Classification of advanced graph models.

7.4 Graph-based Centrality Measures

This Section defines some basic concepts from graph theory and the centrality measures necessary
for understanding the graph-based approach. More details about graph measures can be found
in [3, 19, 67, 83].
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A graph is an ordered pair G = (V,E) where V is the set of vertices and E ⊆V ×V is the set of
edges. A graph is directed if the edges have a direction associated with them. A graph is weighted
if there is a weight function ω that assigns value (real number) to each edge. We use N = |V | and
K = |E| as shorthand for the number of vertices and edges in a graph.

A path in a graph is a sequence of edges which connects a sequence of vertices which are all
distinct from one another. A shortest path between two vertices u and v is a path with the shortest
length and it is called the distance between u and v.

In the graph theory centrality measures refer to indicators which identify the most important
vertices within a graph and that approach is used for the task of ranking the vertices. In the domain
of keyword extraction various centrality measures are proposed and used for the task of ranking the
words in a text.

Centrality measures are local graph measures, focused on a single vertex and its neighborhood.
The neighborhood of a vertex v in graph G is defined as a set of neighbors of a vertex v and is
denoted by N(v). The neighborhood size is the number of immediate neighbors to a vertex. The
number of edges between all neighbors of a vertex is denoted by E(v). In the directed graph, the
set of Nin(v) is the set of vertices that point to a vertex v (predecessors) and set of Nout(v) is the set
of vertices that vertex v points to (successors) .

The clustering coefficient of a vertex measures the density of edges among the immediate
neighbors of a vertex . It determines the probability of the presence of an edge between any two
neighbors of a vertex. It is calculated as a ratio between the number of edges Ei that actually exist
among these and the total possible number of edges among neighbors:

c(v) =
2E(v)

|N(v)|(|N(v)|−1)
. (7.1)

The degree d(v) of a vertex v is the number of edges at v; it is equal to the number of neighbours
of v.

In a directed graph, the in-degree of a vertex v, din(v) is defined as the number of inward edges
from a vertex v. Analogously, the out-degree of a vertex v, dout(v) is defined as the number of
outward edges from a vertex v.

The degree centrality Cd(v) of a vertex v is defined as the degree of the vertex. It can be
normalized by dividing it by the maximum possible degree N−1 :

Cd(v) =
d(v)

N−1
. (7.2)

In the directed graph the in-degree centrality of the vertex v is defined as in-degree of the vertex
(normalized by dividing it by the maximum possible degree N−1) :

Cin
d (v) =

din(v)
N−1

. (7.3)

The out-degree centrality Cout
d (v) of a vertex v is defined analogously .

The strength of the vertex v is a sum of the weights of all the edges incident with the vertex v :

s(v) = ∑
u

wvu. (7.4)

In the directed network, the in-strength sin(v) of the vertex v is defined as the sum of all weights
of inward edges from a vertex v:

sin(v) = ∑
u

wuv. (7.5)
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The out-strength sout(v) of a vertex v is defined analogously .
The selectivity measure is introduced in [19] . It is an average strength of a vertex. For the

vertex v the selectivity is calculated as a fraction of the vertex strength and vertex degree:

e(v) =
s(v)
d(v)

. (7.6)

In the directed network, the in-selectivity of the vertex v is defined as :

ein(v) =
sin(v)
din(v)

. (7.7)

The out-selectivity eout(v) of a vertex v is defined analogously .
The closeness centrality Cc(v) of a vertex v is defined as the inverse of farness, i.e. the sum of

the shortest distances between a vertex and all the other vertices in a graph. Let dvu be the shortest
path between vertices u and v. The normalized closeness centrality of a vertex v is given by:

Cc(v) =
N−1

∑v 6=u dvu
. (7.8)

The betweenness centrality Cb(v) of a vertex v quantifies the number of times a vertex acts as a
bridge along the shortest path between two other vertices . Let σut be the number of the shortest
paths from vertex u to vertex t and let σut(v) be the number of those paths that pass through the
vertex v. The normalized betweenness centrality of a vertex v should be divided by the number of
all possible edges in the graph and is given by:

Cb(v) =
2∑v 6=u,u6=t

σut(v)
σut

(N−1)(N−2)
. (7.9)

The eigenvector centrality CEV (v) measures the centrality of a vertex v as a function of the
centralities of its neighbors. For the vertex v and constant λ it is defined :

CEV (v) =
1
λ

∑
u∈N(v)

CEV (u). (7.10)

In the case of weighted networks, the equation can be generalized. Let wuv be the weight of
edge between vertices u and v and λ a constant. The eigenvector centrality of a vertex v is given by:

CEV (v) =
1
λ

∑
u∈N(v)

wuv×CE(u). (7.11)

There are various centrality measures based on the idea of eigenvector centrality defined. The
HITS method defines authority x(v) and a hub score y(v) for vertex v. Let evu represent the directed
edge from vertex v to vertex u. Given that each vertex has been assigned an initial authority
score x(v)(0) and hub score y(v)(0) as described in [97], HITS iteratively refines these scores by
computing:

x(v)i = ∑
u:euv∈E

y(u)i−1 (7.12)
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y(v)i = ∑
u:evu∈E

x(u)i (7.13)

for k = 1,2, ...
The TextRank centrality is based on the eigenvector centrality measure and implements the

concept of ’voting’ . The TextRank score of a vertex v is initialized to a default value and computed
iteratively until convergence using the following equation:

CPageRank(v) = (1−d)+d ∑
u∈Nin(v)

CPageRank(u)
|Nout(u)|

(7.14)

where d is the dumping factor set between 0 and 1 (usually set to 0.85). The TextRank is a
modification of a PageRank defined for weighted graphs and used for ranking words in the texts .
The equation is:

CTextRank(v) = (1−d)+d ∑
u∈Nin(v)

wuv×CTextRank(u)
∑t∈Nout(u) wut

. (7.15)

7.5 Related Work on Keyword Extraction
Although the keyword extraction methods can be divided as (1) document-oriented and (2)
collection-oriented, we are most interested in some of the other systematization in order to get a
broad overview of the field. The approaches for keyword extraction can be roughly categorized
into either (1) unsupervised or (2) unsupervised . Supervised approaches require an annotated
data source, while the unsupervised require no annotations in advance. The massive use of social
networks and Web 2.0 tools has caused turbulence in the development of new methods for keyword
extraction. In order to improve the performance of methods on massive quantities of data (3)
semi-supervised methods have come into research focus. Figure 7.1 shows the different techniques
that are combined into supervised, unsupervised or both approaches.

Two critical issues of supervised approaches are demands to prepare the training data with
manually annotated keywords and the bias towards the domain on which they are trained. For this
reason in this work, the focus has been shifted towards more unsupervised methods, specifically
graph-based methods which have been developed using only the statistics of the source which is
reflected into the structure of the graph (network).

7.5.1 Supervised
The main idea of supervised methods is to transform keywords extraction into a binary classification
task - word is either a keyword or not. Two typical and well-known systems for supervised keyword
extraction, which set the boundaries of the research field are Kea (Witten et al., 1999 [125]) and
GenEx (Turney, 1999 [121, 125]). The most important features for classifying a keyword candidate
in these systems are the frequency and location of the term in the document. In short, GenEx
uses Quinlan’s C4.5 decision tree induction algorithm to his learning task, while Kea uses Naïve
Bayes algorithm for training and keyphrase extraction. GenEx and Kea are extremely important
systems because, in this field of keyword extraction, they set up the foundation for all other methods
that were developed after, and have become the state-of-the-art benchmark for evaluating the
performance of other methods.

Hulth (2003) in [92] explores the incorporation of linguistic knowledge into the extraction
procedure and uses Noun Phrase chunks (NP) (rather than term frequency and n-grams), and adds
the POS (Part-of-Speech) tag(s) assigned to the term as a feature. In more details, extracting
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Figure 7.4: Classification of graph-based methods, modified from [116].

NP-chunks gives better precision than n-grams , and by adding the POS tag(s) to the terms improves
the results independent of the term selection approach applied.

Turney (2003) in [119] implements enhancements to the Kea keyphrase extraction algorithm
by using statistical associations between keyphrases and enhances the coherence of the extracted
keywords.

Song et al. (2003) represent the Information Gain-Based keyphrase extraction system called
KPSpotter [117].

HaCohen-Kerner et al. (2005) in [88] investigate the automatic extraction and learning of
keyphrases from scientific articles written in English. They use various machine learning (ML)
methods and report that the best results are achieved with J48 (an improved variant of C4.5).

Medelyan and Witten (2006) propose a new method called KEA++, which enhances automatic
keyphrase extraction by using semantic information on terms and phrases gleaned from a domain-
specific thesaurus [102]. KEA++ is actually an improved version of the previously mentioned Kea
devised by Witten et al. Zhang Y. et al.

The group of researchers in [130] (2006) propose the use of not only ’global context infor-
mation’, but also ’local context information’. For the task of keyword extraction they engage
Support Vector Machines (SVM). Experimental results indicate that the proposed SVM based
method can significantly outperform the baseline methods for keyword extraction. Wang (2006)
in [123] exploits different text features in order to determine whether a phrase is a keyphrase: TF
and IDF, appearance in the title or headings (subheadings) of the given document, and the frequency
appearing in the paragraphs of the given document in the combination with Neural Networks are
proposed.

Nguyen and Kan (2007) [108] propose an algorithm for keyword extraction from scientific
publications using linguistic knowledge. They introduce features that capture salient morphological
phenomena found in scientific keyphrases, such as whether a candidate keyphrase is an acronym or
weather it uses specific terminologically productive suffixes.

Zhang C. et al. (2008) in [129] implement a keyword extraction method from documents
using Conditional Random Fields (CRF). The CRF model is a state-of-the-art sequence labeling
method, which can use the features of documents more sufficiently and efficiently, and considers
the keyword extraction as the string labeling task. The CRF model outperforms other ML methods
such as SVM, Multiple Linear Regression model, etc.
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Krapivin et al. (2010) in [95] use NLP techniques to improve various ML approaches (SVM,
Local SVM, Random Forests) to the task of automatic keyphrase extraction from scientific papers.
Evaluation shows promising results that outperform state-of-the-art Bayesian learning system KEA
on the same dataset without the use of controlled vocabularies.

7.5.2 Unsupervised
HaCohen-Kerner (2003) in [89] presents a simple model that extracts keywords from abstracts and
titles. The model uses unigrams, 2-grams and 3-grams, and a stopwords2 list. The highest weighted
group of words (merged and sorted n-grams) is proposed as keywords.

Pasquier (2010) in [112] describes the design of a keyphrase extraction algorithm for a single
document using sentence clustering and Latent Dirichlet Allocation. The principle of the algorithm
is to cluster sentences of the documents in order to highlight parts of text that are semantically
related. The clustering is performed by using the cosine similarity between sentence vectors,
K-means, Markov Cluster Process (MCP) and ClassDens techniques. The clusters of sentences,
that reflect the themes of the document, are analyzed for obtaining the main topic of the text. The
most important words from these topics are proposed as keyphrases.

Pudota et al. (2010) in [113] design a domain independent keyphrase extraction system that
can extract potential phrases from a single document in an unsupervised, domain-independent way.
They engaged n-grams, but they also incorporated linguistic knowledge (POS tags) and statistics
(frequency, position, lifespan) of each n-gram in defining candidate phrases and their respective
feature sets.

Hurt in [93] examines the differences between author generated keywords and automatically
generated keywords using an inverse frequency and maximum likelihood algorithm. They express
results in terms of novel linguistic measure ’keyness’, which is defined as a log-likelihood measure
of the relatedness of one or more specified words, keywords, to a corpus of literature. Testing of
these two methods, they show that there are no statistically significant differences in the achieved
results.

Very recent research by Yang et al. (2013) [128] focus on keyword extraction based on entropy
difference between the intrinsic and extrinsic modes, which refers to the fact that relevant words
significantly reflect the author’s writing intention. Their method uses the Shannon’s entropy
difference between the intrinsic and extrinsic mode, which refers to the occurrences of words
as being modulated by the author’s purpose, while the irrelevant words are distributed randomly
in the text. They indicate that the ideas of this work can be applied to any natural language
without requiring any previous knowledge semantics or syntax of the language, especially for single
documents of which there is no a priori information available.

7.5.3 Graph-Based
Ohsawa et al. (1998) in [109] propose an algorithm for the automatic indexing by co-occurrence
graphs constructed from metaphors, called KeyGraph. This algorithm is based on the segmenting
of a graph, representing the co-occurrence between terms in a document, into clusters. Each cluster
corresponds to a concept on which the author’s idea is based, and top ranked terms by a statistic
based on each term’s relationship to these clusters are selected as keywords. KeyGraph proved to
be a content sensitive, domain independent device of indexing.

Matsou et al. (2001) in [101] present early research where a text document is represented as an
undirected and unweighted co-occurrence network. Based on the network topology, the authors
proposed an indexing system called KeyWorld, which extracts important terms (pairs of words) by
measuring their contribution to small-world properties. The contribution of the vertex is based on

2Stopwords are the most frequent function words, which do not carry strong semantic properties, but are needed for
the syntax of the language.
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the closeness centrality calculated as the difference in small-world properties of the network with
the temporarily elimination of a vertex combined with the inverse document frequency (idf).

Erkan and Radev (2004) in [85] introduce a stochastic graph-based method for computing
the relative importance of textual units on the problem of text summarization by extracting the
most important sentences. LexRank calculates sentence importance based on the concept of the
eigenvector centrality in a graphical representation of sentences. A connectivity matrix based on
intra-sentence cosine similarity is used as the adjacency matrix of the graphical representation of
sentences. LexRank is shown to be quite insensitive to the noise in the data.

Mihalcea and Tarau (2004) in [106] report upon a seminal research which introduced a state-
of-the-art TextRank model. TextRank is derived from PageRank and introduced to graph based
text processing, keyword and sentence extraction tasks. The abstracts are modeled as undirected
or directed and weighted co-occurrence networks using a co-occurrence window of variable sizes
(2-10). The lexical units are preprocessed: stopwords removed, words restricted with POS syntactic
filters (open class words, nouns and adjectives, nouns). The PageRank motivated score of the
importance of the vertex derived from the importance of the neighboring vertices is used for
keyword extraction. The obtained TextRank performance compares favorably with the supervised
machine learning n-gram based approach.

Mihalcea (2004) in [104] presents an extension to earlier work [106], where the TextRank
algorithm is applied for the text summarization task powered by sentence extraction. In this task
TextRank performed on a par with the supervised and unsupervised summarization methods, which
motivated the new branch of research based on the graph-based extracting and ranking algorithms .

Xie (2005) in [127] studies different centrality measures in order to predict noun phrases that
appear in the abstracts of scientific articles. The measures tested are: degree, closeness, betweenness
and information centrality . Their results show that centrality measures improve the accuracy of
the prediction in terms of both precision and recall. Furthermore, the method of constructing a
noun-phrase (NP) network significantly influences the accuracy when using the centrality heuristic
itself, but is negligible when it is used together with other text features in decision trees.

Huang et al. (2006) [91] propose an automatic keyphrase extraction algorithm using an
unsupervised method also based on connectedness and betweenness centrality.

Palshikar (2007) in [110] proposes a hybrid structural and statistical approach to extract key-
words from a single document . The undirected co-occurrence network, using a dissimilarity
measure between two words, calculated from the frequency of their co-occurrence in the prepro-
cessed and lemmatized document, as the edge weight, was shown to be appropriate for the centrality
measures based approach for keyword extraction.

Wan and Xiao (2008) in [122] propose a small number of nearest neighbor documents to
provide more knowledge to improve single document keyphrase extraction. A specified document
is expanded to a small document set by adding a few neighbor documents close to the document
using a cosine similarity measure, while the term weight is computed by TF-IDF . The local
information in the specified document and the global information in all the neighboring documents
are taken into consideration along with the expanded document set using a graph-based ranking
algorithm .

Litvak and Last (2008) in [98] compare supervised and unsupervised approaches for keywords
identification in the task of extractive summarization. The approaches are based on the graph-based
syntactic representation of text and web documents. The results of the HITS algorithm on a set of
summarized documents performed comparably to supervised methods (Naïve Bayes, J48, SVM).
The authors suggest that simple degree-based rankings from the first iteration of HITS, rather than
running it to its convergence, should be considered.

Grineva et al. (2009) in [87] use community detection techniques for the extraction of key
terms on Wikipedia’s texts, modeled as a graph of semantic relationships between terms. The
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results show that the terms related to the main topics of the document tend to form a community,
thematically cohesive groups of terms. Community detection allows the effective processing of
multiple topics in a document and efficiently filters out noise. The results achieved on weighted and
directed networks from semantically linked, morphologically expanded and disambiguated n-grams
from the articles’ titles. Additionally, for the purpose of testing noise stability, they repeated the
experiment on different multi-topic web pages (news, blogs, forums, social networks, product
reviews) which confirmed that community detection outperforms TF-IDF model.

Tsatsaronis et al. (2010) in [118] present SemanticRank, a network based ranking algorithm
for keyword and sentence extraction from text. Semantic relation is based on the calculated
knowledge-based measure of semantic relatedness between linguistic units (keywords or sentences).
The keyword extraction from the Inspec abstracts’ results reported a favorable performance of
SemanticRank over state-of-the-art counterparts - weighted and unweighted variations of PageRank
and HITS.

Litvak et al. (2011) in [99] introduce DegExt, a graph-based language independent keyphrase
extractor, which extends the keyword extraction method described in [98]. They also compare
DegEx with state-of-the-art approaches: GenEx [121] and TextRank [106]. DegEx surpasses both
in terms of precision, implementation simplicity and computational complexity.

Boudin (2013) in [80] compares various centrality measures for graph-based keyphrase extrac-
tion. Experiments on standard data sets of English and French show that simple degree centrality
achieves results comparable to the widely used TextRank algorithm; and that closeness centrality
obtains the best results on short documents. Undirected and weighted co-occurrence networks are
constructed from syntactically (only nouns and adjectives) parsed and lemmatized text using a
co-occurrence window. Degree, closeness, betweenness and eigenvector centrality are compared
to the PageRank motivated method proposed by Mihalcea (2004) in [106] as a baseline. Degree
centrality achieves a similar performance as the much more complex TextRank. Closeness centrality
outperforms TextRank on short documents (scientific papers abstracts).

Zhou et al. (2013) in [132] investigate a weighted complex network based keyword extraction
incorporating the exploration of the network structure and linguistics knowledge. The focus is
on the construction of a lexical network including the reasonable selection of vertices, the proper
description of the relationships between words, a simple weighted network and TF-IDF. The
reasonable selection of words from texts as lexical vertices from a linguistic perspective, the proper
description of the relationship between words and the enhancement of vertex attributes attempt
to represent texts as lexical networks more accurately. The Jaccard coefficient is used to reflect
the associations or relationships of two words rather than the usual co-occurrence criteria in the
process of network construction. The importance of each vertex to become a keyword candidate is
calculated with closeness centrality. The compound measures that takes vertex’s attributes (words
length and IDF) are applied. Approach is compared with three competitive baseline approaches:
binary network, simple weighted network and TF-IDF approach. Experiments for Chinese indicate
that the lexical network constructed by this approach achieves preferable effect on accuracy, recall
and F-score over the classic TF-IDF method.

Lahiri et al. (2014) in [96] extract keywords and keyphrases from co-occurrence networks of
words and from noun-phrases collocations’ networks. Eleven measures (degree, strength, neigh-
borhood size, coreness, clustering coefficient, structural diversity index, page rank, HITS hub and
authority score , betweenness, closeness and eigenvector centrality) are used for keyword extraction
from directed/undirected and weighted networks. The obtained results from four data sets suggest
that centrality measures outperform the baseline term frequency - inverse document frequency
(TF-IDF) model, and simpler measures such as degree and strength outperform computationally
the more expensive centrality measures such as coreness and betweenness.

Abilhoa and de Castro (2014) in [75] propose a keyword extraction method representing tweets
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(microblogs) as graphs and apply centrality measures for finding the relevant keywords. They
developed a technique named Twitter Keyword Graph where in the pre-processing step they use
tokenization, stemming and stopwords’ removal. Keywords are extracted from the graph cascade-
like applying graph centrality measures - closeness and eccentricity. The performance of the
algorithm is tested on a single text from the literature and compared with the TF-IDF approach
and KEA algorithm. Finally, the algorithm is tested on five sets of tweets of increasing size. The
computational time to run the algorithms proved to be a robust proposal to extract keywords from
texts, especially from short texts such as microblogs.

Beliga et al. (2014) in [59] propose the selectivity-based keyword extraction (SBKE) as a new
unsupervised method for network-based keyword extraction. This approach is built with a new
network measure - the vertex selectivity (defined as the average weight distribution on the edges of
the single vertex) - see Section 7.5. In [59] is also shown that selectivity slightly outperforms the
standard centrality-based measures: in-degree, out-degree, betweenness and closeness. Vertices
with the highest selectivity value are open-class words (content words) which are preferred keyword
candidates (nouns, adjectives, verbs) or even part of collocations, keyphrases, names, etc. Selectivity
is insensitive to non-content words or stopwords and therefore can efficiently detect semantically
rich open-class words from the network and extract keyword candidates.

Centrality measures are discriminative properties of the importance of a vertex in a graph, and
are directly related to the structure of the graph [75]. The Table 7.1 in parts one and two overviews
network measures that are widely used in graph-based research on keyword extraction, together
with additional measures from the NLP domain. Mark asterisk (*) denotes graph-based measures.
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NAME DEFINITION RESEARCH
Degree* Number of edges incident to a vertex. [59, 80, 96, 127]

Strength* Sum of the weights of the edges incident to
a vertex.

[96]

Selectivity* Fraction of the vertex strength and vertex
degree (average strength).

[59]

Neighborhood size* Number of immediate neighbors to a ver-
tex.

[96]

Coreness* Outermost core number of a vertex in the
k-core decomposition of a graph.

[96]

Clustering Coefficient* Density of edges among the immediate
neighbors of a vertex.

[96]

Page Rank* Importance of a vertex based on how many
important vertices it is connected to.

[96, 118]

TextRank* Modification of an algorithm derived from
Google’s PageRank is based upon the
eigenvector centrality measure and imple-
ment the concept of ’voting’.

[80, 104]

HITS* Importance of a vertex as a hub (pointing to
many others) and as an authority (pointed
to by many others).

[96, 98, 118]

Betweenness* The fraction of shortest paths that pass
through a vertex, calculated over all ver-
tex pairs - the measure of how many short-
est paths between all other node-pairs are
traversing a node.

[59, 80, 91, 96, 127]

Closeness* Reciprocal of the sum of distances of all
vertices to some vertex.

[59, 75, 80, 96, 101, 127, 132]

Community detection* Community detection techniques are based
on the principles which detect nodes with
dense internal connections and sparser con-
nections between groups.

[87]

Eigenvector Centrality* Element of the first eigenvector of a graph
adjacency matrix corresponding to a vertex.

[80, 96]

Information Centrality Generalization of betweenness centrality -
focuses on the information contained in all
paths originating with a specific actor.

[127]

Structural Diversity Index Normalized entropy of the weights of the
edges incident to a vertex.

[96]

The Jaccard coeffi-
cient or Jaccard index

Reflects the association or relationship of
two words taking into account not only the
co-occurrence frequency, but also the fre-
quency of both words in a pair.

[132]

Table 7.1: Measures and algorithms used for keyword extraction - Part 1 (asterisk (*) denotes
graph-based measures).
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NAME DEFINITION RESEARCH
Information Gain The Kullback-Leibler divergence - a measure of ex-

pected reduction in entropy based on the ’usefulness’
of an attribute.

[117]

TF, IDF, TF-IDF Term frequency, inverse document frequency.
[87,93,96,101,110]
[113, 121–123, 125,
132]

n-gram N-gram is a contiguous sequence of n items from a
given sequence of text or speech.

[89, 92, 106, 113]

Cosine similarity Determines similarity between two vectors. [85, 112, 122]
SingleRank Compute word scores for each single document based

on the local graph for the specified document.
[122]

ExpandRank Compute word scores for each single document based
on the neighborhood knowledge of other documents.

[122]

Shannon’s en-
tropy difference

The difference between the intrinsic and extrinsic
entropy.

[128]

Keyphraseness The linear combination of features: phrase frequency,
pos value, phrase depth, phrase last occurrence,
phrase lifespan.

[100]

Other Harmonic centrality, LIN centrality, Katz centrality,
Wiener index, eccentricity, connectedness [127], POS
tags [92, 113], CRF [129], LexRank [85], Semanti-
cRank [118], SimRank, etc.

Table 7.2: Measures and algorithms used for keyword extraction - Part 2.

7.6 Selectivity-Based Keyword Extraction

7.6.1 Dataset

For the network based keyword extraction we use the data set composed of Croatian news articles
[107]. The data set contains 1020 news articles from the Croatian News Agency (HINA), with
manually annotated keywords (key phrases) by human experts. The set is divided as such: 960
annotated documents for learning of supervised methods, and 60 documents for testing. The test
set of 60 documents is annotated by 8 different experts. We selected the first 30 texts from HINA’s
collection for our experiment.

7.6.2 Co-occurrence Network Construction

Each text can be represented as a complex network of linked words: each individual word is a
vertex and the interactions amongst words are edges. Co-occurrence networks exploit simple
neighbor relation; two words are linked if they are adjacent in the sentence [99]. The weight of
the edge is proportional to the overall co-occurrence frequencies of the corresponding word pairs
within a corpus. From the documents in the HINA data set we construct directed and weighted
co-occurrence networks: one from the text in each document .
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7.6.3 Results
We compute centrality measures for each vertex in a network constructed from 60 news articles:
in-degree, out-degree, closeness, betweenness and selectivity. Then we rank all vertices (words)
according to the values of each of these measures, obtaining the top 15 keyword candidates
automatically from the network. It is obvious that top 15 ranked words according to the in/out
degree centrality, closeness centrality and betweenness centrality are stopwords (conjunctions,
prepositions, determiners, etc.) - see Table 7.3. It can also be noticed that centrality measures return
almost identical stopwords. However, the selectivity measure ranked only open-class words: nouns,
verbs and adjectives. We expect that among these highly-ranked words are keyword candidates.
The same results are shown in the preliminary research on keyword extraction from multitopic web
documents [72].

IN-DEGREE OUT-DEGREE CLOSENESS BETWEENNESS SELECTIVITY
biti (is/be) biti (is/be) biti (is/be) biti (is/be) Bratislava
i( and) i (and) i (and) i (and) području (area)
u (in) u (in) taj (that/this) u (in) utorak (Tuesday)
a (but/and) a (but/and) na (on) a (but/and) zaled’e (hinterland)
da (that/to) sebe (self) sebe (self) sebe (self) revolucije (revolution)
koji (which) za (for) on (he) da (that/to) provjera (check)
a (for) taj (that/this) da (that/to) taj (that/this) II. (roman number)
a (but/and) da (that/to) u(in) koji (which) desetljeća (decades)
taj (that/this) od (from) ali (but) za (for) Balkanu (Balkan)
sebe (self) s (with) za (for) hrvatski (Croatian) sloboda (freedom)
s (with) a (but/and) kako (how) a (but/and) universe
od (of) koji (which) hrvatski (Croatian) od (from) trophy
ne (not/no) ne (not/no) još (more/yet) s (with) stotina(hundred)
hrvatski (Croatian) hrvatski (Croatian) sad (now) ne (not/no) Splitu (Split)
o (on/about) će (will) godina (year) iz (from) razlika (difference)

Table 7.3: The top 15 ranked words according to the measures: in-degree, out-degree, closeness,
betweenness and selectivity from th whole HINA dataset.

In short, it seems that selectivity is insensitive to stopwords and therefore can efficiently detect
semantically rich open-class words from the network and extract better keyword candidates (which
are probably names, parts of collocations or key phrases).

Simple measures such as selectivity promulgates the views and opportunities for the develop-
ment of new graph-based methods which can yield successful keyword ranking, and at the same
time circumvent the usage of demanding NLP procedures, which are deeply rooted in standard KE
techniques. If we take into consideration the complexity and computational resources, then it is clear
that the graph-based methods may have the advantage over traditional supervised and unsupervised
methods. This is the reason why it makes sense to continue the work towards developing new
graph-based methods.

7.7 Conclusion and Future Trends

Keywords provide a compact representation of a document’s content. Graph-based methods for
keyword extraction are inherently unsupervised, and have the fundamental aim to build a network
of words (phrases or linguistic units) and then rank the vertices exploiting the measures of the
network structure, usually centrality motivated. This Chapter is a detailed systemization of existing
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approaches for keyword extraction: the review of related work on supervised and unsupervised
methods with a special focus on the graph-based methods. The Chapter consolidates the most
commonly used centrality measures that are essential in graph-based methods: in/out-degree,
closeness, betweenness, etc. In addition, the existing work of Croatian extraction is included as
well.

This work provides an insight into the related work of graph-based keyword extraction methods
which successfully consolidated various techniques of natural language processing and complex
network analysis. Combinations of these techniques establish a solid platform regard to the objec-
tives of keyword (term) extraction and scope of the specific application. Such hybrid techniques
represent new convenient ways to circumvent anomalies that occur in VSM and other traditionally
used models.

Graph-based methods for keyword extraction are simple and robust in many ways: (1) they
do not require advanced linguistic knowledge or processing, (2) they are domain independent and
(3) they are language independent. Such graph-based KE techniques are certainly applicable for
various tasks: text classification, summarization, search, etc. Due to the aforementioned benefits
it is reasonable to expect that graph-based extraction will attract the attention of the research
community in the future. It can be expected that many text and document analyses will incorporate
graph-based keyword extraction.





8. Network-based Keyword Extraction from
Multitopic Web Documents

8.1 Abstract

In this work we analyse the selectivity measure calculated from the complex network in the task of
the automatic keyword extraction. Texts, collected from different web sources (portals, forums), are
represented as directed and weighted co-occurrence complex networks of words. Words are nodes
and links are established between two nodes if they are directly co-occurring within a sentence. We
test different centrality measures for ranking nodes - keyword candidates. The promising results
are achieved using the selectivity measure. Then we propose an approach which enables extracting
word pairs according to the values of the in/out-selectivity and weight measures combined with
filtering.

8.2 Introduction

Keyword extraction is an important task in the domain of the Semantic Web development. It is a
problem of automatic identification of the important terms or phrases in text documents. It has
numerous applications: information retrieval, automatic indexing, text summarization, semantic
description and classification, etc. In the case of web documents it is a very demanding task: it re-
quires extraction of keywords from web pages that are typically noisy, overburden with information
irrelevant to the main topic (navigational information, comments, future announcements, etc.) and
they usually contain several topics [87]. Therefore, in keyword extraction from web pages we are
dealing with noisy and multitopic datasets .

Various approaches have been proposed for keywords and keyphrases identification (extraction)
task. There are two main classes of approaches: supervised and unsupervised. Supervised
approaches are based on using machine learning techniques on the manually annotated data
[120, 125]. Therefore supervised approaches are time consuming and expensive. Unsupervised
approaches may include clustering [133], language modelling [137] and graph-based approaches.
Unsupervised approaches may also require different sets of external data, however these approaches
are not depended on manual annotation. These approaches are more robust, but usually less
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precise [80] .
A class of graph-based keyword extraction algorithms overcome some of these problems. In

graph-based or network-based approaches the text is represented as a network in a way that words
are represented as nodes and links are established between two nodes if they are co-occurring
within the sentence. The main idea is to use different centrality measures for ranking nodes in
the network. Nodes with the highest rank represent words that are candidates for keywords and
keyphrases. In [96] an exhaustive overview of network centrality measures usage in the keyword
identification task is given.

One of the probably most influential graph-based approaches is the TextRank ranking model
introduced by Mihalcea and Tarau in [106]. TextRank is a modification of PageRank algorithm
and the basic idea of this ranking technique is to determine the importance of a node according
to the importance of its neighbours, using global information recursively drawn from the entire
network. However, some recent researches have shown that even simpler centrality measures can
give satisfactory results. Boudin [80] and Lahiri et al. [96] compare different centrality measures
for keyword extraction task. Litvak and Last [98] compare supervised and unsupervised approach
for keywords identification in the task of extractive summarization .

We have already experimented with graph-based approaches for Croatian texts representation.
In [134, 135] we described graph-based word extraction and representation from the Croatian
dictionary. We used lattice to represent different semantic relations (partial semantic overlapping,
more specific, etc.) between words from the dictionary.

In [21, 50, 71] we described and analysed network-based representation of Croatian texts.
In [50] our results showed that in-selectivity and out-selectivity values from shuffled texts are

constantly below selectivity values calculated from normal texts. It seems that selectivity measure is
able to capture typical word phrases and collocations which are lost during the shuffling procedure.
The same holds for English where Masucci and Rodgers [19] found that selectivity somehow
captures the specialized local structures in nodes’ neighborhood and forms of the morphological
structures in text. According to these results, we expected that node selectivity may be potentially
important for the text categories differentiation and include it in the set of standard network
measures. In [71] we show that the node selectivity measure can capture structural differences
between two genres of text.

This was the motivation for further exploration of selectivity for keyword extraction task from
Croatian multitopic web documents. We have already analysed the selectivity-based keyword
extraction in Croatian news [59]. In this Chapter we propose an in/out-selectivity based approach
combined with filtering to extract keyword candidates from the co-occurrence complex network of
text. We design selectivity-based approach as unsupervised, data and domain independent. In its
basic form, only the stopwords list is a prerequisite for applying stopwords-filter. As designed, it
is a very simple and robust approach appropriate for extraction from large multitopic and noisy
datasets.

In Section 8.3 we present measures for the network structure analysis. In Section 8.4 we
describe datasets and the construction of co-occurrence networks from used text collection. In
Section 8.5 are the results of keyword extraction, and in the final Section 8.6, we elaborate the
obtained results and make conclusions regarding future work.

8.3 The Network Measures

This Section describes basic network measures that are necessary for understanding our approach.
More details about these measures can be found in [19, 67, 136]. In the network, N is the number
of nodes and K is the number of links. In weighted language networks every link connecting two
nodes i and j has an associated weight wi j that is a positive integer number.
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The node degree ki is defined as the number of links incident upon a node. The in degree and
out degree kin/out

i of node i is defined as the number of its in and out neighbours.
Degree centrality of the node i is the degree of that node. It can be normalised by dividing it by

the maximum possible degree N−1 :

dci =
ki

N−1
. (8.1)

Analogously, the in-degree centralities are defined as in-degree of a node :

dcin
i =

kin
i

N−1
. (8.2)

The out-degree centrality of a node is defined in a similar way . Closeness centrality is defined
as the inverse of farness, i.e. the sum of the shortest paths between a node and all the other nodes.
Let di j be the shortest path between nodes i and j. The normalised closeness centrality of a node i
is given by :

cci =
N−1

∑i 6= j di j
. (8.3)

Betweenness centrality quantifies the number of times a node acts as a bridge along the shortest
path between two other nodes. Let σ jk be the number of shortest paths from node j to node k and let
σ jk(i) be the number of those paths that traverse through the node i. The normalised betweenness
centrality of a node i is given by :

bci =
∑i 6= j 6=k

σ jk(i)
σ jk

(N−1)(N−2)
. (8.4)

The strength of a node i is a sum of weights of all links incident with the node i :

si = ∑
j

wi j. (8.5)

All given measures are defined for directed networks, but language networks are weighted,
therefore, the weights should be considered. In the directed network, the in-strength sin

i of the node
i is defined as the number of its incoming links, that is :

sin
i = ∑

j
w ji. (8.6)

The out-strength is defined in a similar way . The selectivity measure is introduced in [19]. It is
actually an average strength of a node. For a node i the selectivity is calculated as a fraction of the
node weight and node degree :

ei =
si

ki
. (8.7)

In the directed network, the in-selectivity of the node i is defined as :

ein
i =

sin
i

kin
i
. (8.8)

The out-selectivity is defined in a similar way .
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Dataset GL NN IN SD
Number of words 199 417 146 731 118 548 44 367
Number of nodes N 27727 13036 15065 9553
Number of links K 105171 55661 28972 25155

Table 8.1: The number of words, number of nodes and number of links for all 4 datasets.

8.4 Methodology

8.4.1 The Construction of Co-occurrence Networks

Dataset contains 4 collections of web documents written in Croatian language collected from
different web sources (portals and forums on different daily topics). The 4 different web sources:
business portal Gospodarski list (GL), legislative portal Narodne novine (NN), news portal with
forum Index.hr (IN), daily newspaper portal Slobodna Dalmacija (SD). The first step in networks
construction was text preprocessing: "cleaning" special symbols, normalising Croatian diacritics
(č, ć, ž, š, dž), and removing punctuations which does not mark the end of a sentence. Commonly,
for Croatian which is highly flective Slavic language the lemmatisation and part-of-speech tagging
should be performed, but we model our experiment without any explicit language knowledge.

For each dataset we constructed weighted and directed co-occurrence network. Nodes are
words that are linked if they are direct neighbours in a sentence. The next step was introducing the
networks as weighted edgelists, which contain all the pairs of connected words and their weights
(the number of connections between two same words). In the Table 8.1 there are number of words,
number of nodes and number of links per each dataset. We used Python and the NetworkX software
package developed for the construction, manipulation, and study of the structure, dynamics, and
functions of complex networks [8].

8.4.2 The Selectivity-based Approach

The goal of this experiment is to analyse the selectivity measure in the automatic keyword extraction
task. First, we compute centrality measures for each node in all 4 networks: in-degree centrality,
out-degree centrality, closeness centrality, betweenness centrality and selectivity centrality. Then
we rank all nodes (words) according to the values of each of these measures, obtaining top 10
keyword candidates automatically from the network.

In the second part of our experiment we compute in-selectivity and out-selectivity for each
node in all 4 networks. The nodes are then ranked according to the highest in/out-selectivity values.
Then, for every node we detect neighbour nodes with the highest weight. For the in-selectivity we
isolate one neighbour node with the highest outgoing link weight. For the out-selectivity we isolate
one neighbour node with the highest ingoing link weight. The result of in/out-selectivity extraction
is a set of ranked word tuples.

The third part of our approach consider applying different filters on the in/out-selectivity based
word tuples. The first is the stopwords-filter: we filter out all tuples that contain stopwords .
Stopwords are a list of the most common, short function words which do not carry strong semantic
properties, but are needed for the syntax of language (pronouns, prepositions, conjunctions, abbre-
viations, interjections,...). The second is the high-weights-filter: from the in/out-selectivity based
word tuples we chose only those tuples that have the same values for the selectivity and weight.
The third filter is the combination of the first two filters.
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selectivity in-degree out-degree closeness betweenness
1. mladićevi (joungsters) i (and) i (and) je (is) i (in)
2. pomlatili (beaten) u (in) je (is) i (and) je (is)
3. seksualnog (sexual) je (is) u (in) se (self) u (in)
4. policijom (police) na (on) na (on) da (that) na (on)
5. uhićeno (arrested) da (that) se (self) su (are) se (self)
6. skandala (scandal) za (for) za (for) to (it) za (for)
7. podnio (submitted) se (self) su (are) a (but) da (that)
8. obožavatelji (fans) a (but) da (that) će (will) su (are)
9. sata (hour) su (are) s (with) samo (only) a (but)
10. Baskiji (Baskia) s (with) od (from) ali (but) s (with)

Table 8.2: Top ten words from the dataset IN ranked according to the selectivity, in/out-degree,
closeness and betwenness.

8.5 Results

Initially, we analyse 4 networks constructed for each dataset. The top 10 ranked nodes with the
highest values of the selectivity, in degree, out degree, closeness and betwenness measures for
datasets IN, GL, SD and NN are shown in the Tables 8.2, 8.3, 8.4 and 8.5. It is obvious that top
10 ranked words according to the in/out degree centrality, closeness centrality and betwenness
centrality are stopwords. It can be also noticed that centrality measures return almost identical top
10 stopwords. However, the selectivity measure ranked only open-class words: nouns, verbs and
adjectives. We expect that among these highly ranked words are keyword candidates.

Furthermore, we analyse selectivity measure in details. Since texts are better represented as
directed networks [18], we analyse words with in-selectivity and out-selectivity measure separately.
We extract word-tuple: the word before for in-selectivity and the word after for out-selectivity that
has the highest value of the weight. In Table 8.6 are shown ten highly ranked in/out-selectivity
based word-tuples together with the values of in/out-selectivity and weight.

Hence, we extract the most frequent word-tuples which are possible collocations or phrases
from the text. We expect that among these highly ranked word-tuples are keyword candidates. Due
to limited space, we show results only for the NN dataset, but other datasets raised similar results.

In Table 8.6 there are word-tuples which contain stopwords, especially for the in-selectivity
based ranking.Therefore we use stopwords-filter defined in the previous Section as shown in
Table 8.7. Now we obtain more open class keyword candidates from highly ranked word-tuples.

In Table 8.8. there are 10 highly ranked word-tuples for the NN dataset with the high-weights-
filter applied. Using this approach some new keyword candidates appear in the ranking results.

In Table 8.9. there are 10 highly ranked word-tuples from the NN dataset with the both filters
applied. According to our knowledge about the content of the dataset, these two filters derived the
best results.

8.6 Conclusion and Discussion

We analyse network-based keyword extraction from multitopic Croatian web documents using
selectivity measure. We compare keyword candidate words rankings with selectivity and three
network-based centrality measures (degree, closeness and betwenness). The selectivity measure
gives better results because centrality-based rankings select only stopwords as the top 10 ranked
words. Furthermore, we propose extracting the highly connected word-tuples with the highest in/out-
selectivity values as the keyword candidates. Finally, we apply different filters (stopwords-filter,
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selectivity in degree out degree closeness betweenness
1. stupastih (cage) i (and) i (and) i (and) i (and)
2. populaciju (population) u (in) u (in) se (self) u (in)
3. izdanje (issue) na (on) je (is) je (is) je (is)
4. online (online) je (is) se (self) su (are) na (on)
5. webshop (webshop) ili (or) na (on) a (but) se (self)
6. matrica (matrix) a (but) ili (or) ili (or) ili (or)
7. pretplata (subscription) se (self) su (are) to (it) a (but)
8. časopis (journal) za (for) za (for) bolesti (disease) za (for)
9. oglasi (ads) od (from) od (from) da (that) su (are)
10. marketing (marketing) su (are) a (but) biljke (plants) od (from)

Table 8.3: Top ten words from the dataset GL ranked according to the selectivity, in/out-degree,
closeness and betwenness.

selectivity in-degree out-degree closeness betweenness
1. seronjo (bullshitter) i (and) i (and) i (and) i (and)
2. Splitu (Split) u (in) je (is) je (is) je (is)
3. upišite (fill-in) je (is) u (in) svibanj (May) u (in)
4. uredniku (editor) komentar (comment) se (self) se (self) se (self)
5. ekrana (monitor) na (on) svibanj ali (but) na (on)
6. crkvu (church) se (self) na (on) a (but) od (from)
7. supetarski (Supetar) za (for) za (for) će (will) za (for)
8. vijesti (news) a (but) da (that) to (it) a (but)
9. zaradom (earning) svibanj (May) ne (ne) još (more) svibanj
10. Jović (Jović) od (from) a (but) pa (so) to (it)

Table 8.4: Top ten words from the dataset SD ranked according to the selectivity, in/out-degree,
closeness and betwenness.

selectivity in-degree out-degree closeness betweenness
1. novine (newspaper) i (and) i (and) i (and) i (and)
2. temelju (based on) u (in) u (in) ili (or) u (in)
3. manjinu (minority) za (for) je (is) je (is) za (for)
4. srpsku (Serbian) na (on) za (for) se (self) ili (or)
5. sladu (harmony) ili (or) se (self) da (that) na (on)
6. snagu (strength) iz (from) ili (or) usluga (service) je (is)
7. osiguranju (insurance) te (and) na (on) zakona (law) se (self)
8. narodnim (national) je (is) o (on) a (but) o (on)
9. novinama (newspaper) se (self) te (and) skrbi (welfare) te (and)
10. kriza (crisis) s (with) članak (article) HRT-a (HRT-a) iz (form)

Table 8.5: Top ten words from the dataset NN ranked according to the selectivity, in/out-degree,
closeness and betwenness.
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in-selectivity out-selectivity
word tuple ein w word tuple eout w

1. narodne novine 326 326 srpsku nacionalnu 222 222
2. na temelju 317 317 nacionalnu pripadnost 183 1
3. nacionalnu manjinu 275 2 ovjesne jedrilice 159 159
4. za srpsku 222 222 narodnim novinama 129 129
5. u skladu 202 202 narodne jazz 111 1
6. na snagu 172 172 manjinu gradu 78 1
7. o osiguranju 134 43 ovoga sporazuma 72 1
8. u narodnim 129 129 crvenog kristala 72 3
9. narodnim novinama 129 129 skladu provjeriti 67 1

10. crvenog križa 99 2 oružanih sukoba 58 4

Table 8.6: Top ten highly ranked in/out-selectivity based word-tuples for the NN dataset.

in-selectivity out-selectivity
word tuple ein w word tuple eout w

1. narodne novine 326 326 srpsku nacionalnu 222 222
2. nacionalnu manjinu 275 2 nacionalnu pripadnost 183 1
3. narodnim novinama 129 129 ovjesne jedrilice 183 1
4. crvenoga križa 99 2 narodnim novinama 129 129
5. jedinicama regionalne 65 1 narodne jazz 111 1
6. nacionalne manjine 61 61 manjinu gradu 78 1
7. rizika snaga 57 1 ovoga sporazuma 72 1
8. medije ubroj 47 1 crvenog kristala 72 3
9. crveni križ 42 42 skladu provjeriti 67 1
10. uopravni spor 41 41 oružanih sukoba 58 4

Table 8.7: Top ten highly ranked in/out-selectivity based word-tuples without stopwords for the NN
dataset.

in-selectivity out-selectivity
word tuple ein=w word tuple eout=w
na temelju (based on) 317 ovjesne jedrilice (hangh glider) 159
za srpsku (for Serbian) 222 narodnim novinama (Nat. news.) 129
u skladu (according to) 202 sjedištem u (headquarter in) 55
na snagu (into effect) 172 objavit će (will be bublished) 53
u narodnim (in national) 129 republici Hrvatskoj (Croatia) 52
narodnim novinama (Nat. news.) 129 albansku nacionalnu (Alb. nat.) 52
i dopunama (and amendments) 68 republika Hrvatska (Croatia) 49
nacionalne manjine (nat. minority) 61 oplemenjivačkog prava (noble law) 45
sa sjedištem (with headquarter) 55 madjarsku nacionalnu (Hung. nat.) 40

Table 8.8: Top ten highly ranked in/out-selectivity based word-tuples with equal in/out-selectivity
and weight for the NN dataset.
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in-selectivity word tuple out-selectivity word tuple
narodne novine (National newspaper) srpsku nacionalnu (Serbian national)
narodnim novinama (Nat. newspapers) ovjesne jedrilice (hangh glider)
nacionalne manjine (nat. minority) narodnim novinama (Nat. newspapers)
crveni križ (red cross) republici hrvatskoj (Republic of Croatia)
upravni spor (administrative dispute) albansku nacionalnu (Albanian national)
ovjesnom jedrilicom (hangh glider) republika hrvatska (Republic of Croatia)
elektroničke medije (electronic media) oplemenjivačkog prava (noble law)
nacionalnih manjina (national minority) madjarsku nacionalnu (Hungarian nat.)
domovinskog rata (Homeland War) romsku nacionalnu (Romany national)
Ivan Vrljić (Ivan Vrljić) nadzorni odbor (supervisory board)

Table 8.9: Top ten highly ranked in/out-selectivity based word-tuples with equal in/out-selectivity
and weight without stopwords for the NN dataset.

high-weights-filter) in order to keyword candidate list.
The first part of analysis can raise some considerations regarding the selectivity measure. The

selectivity measure is important for the language networks especially because it can differentiate
between two types of nodes with high strength values (which means words with high frequencies).
Nodes with high strength values and high degree values would have low selectivity values. These
nodes are usually stopwords (conjunctions, prepositions,...). On the other side, nodes with high
strength values and low degree values would have high selectivity values. These nodes are possible
collocations, keyphrases and names that appear in the texts. It seems that selectivity is insensitive
to stopwords (which are the most frequent words) and therefore can efficiently detect semantically
rich open class words from the network.

Furthermore, since we modelled multitopic datasets the keyword extraction task is even more
demanding. From the results of this preliminary research it seems that the selectivity has a potential
to extract keyword candidates without preprocessing (lemmatisation, POS tagging) from multitopic
sources.

There are several drawbacks in this reported work: we did not perform the classical evaluation
procedure because we did not have annotated data and we conducted analysis only on Croatian
texts.

For the future work we plan to evaluate our results on different datasets in different languages.
Furthermore, it seems promising to define an approach that can extract a sequence of three or four
neighbouring words based on filtered word-tuples. We also plan to experiment with lemmatised
texts. Finally, in the future we will examine the effect of noise to the results obtained from multitopic
sources.



9. Toward Selectivity Based Keyword Extraction
for Croatian News

9.1 Abstract

Our approach proposes a novel network measure - the node selectivity for the task of keyword
extraction. The node selectivity is defined as the average strength of the node. Firstly, we show
that selectivity based keyword extraction slightly outperforms the extraction based on the standard
centrality measures: in-degree, out-degree, betweenness, and closeness. Furthermore, from the data
set of Croatian news we extract keyword candidates and expand extracted nodes to word-tuples
ranked with the highest in/out selectivity values. The obtained sets are evaluated on manually
annotated keywords: for the set of extracted keyword candidates the average F1 score is 24.63%,
and the average F2 score is 21.19%; for the exacted word-tuples candidates the average F1 score is
25.9% and the average F2 score is 24.47%. Selectivity based extraction does not require linguistic
knowledge while it is purely derived from statistical and structural information of the network.

9.2 Introduction

The task of keyword extraction is to automatically identify a set of terms that best describe
the document [106]. Automatic keyword extraction establishes a foundation for various natural
language processing applications: information retrieval, the automatic indexing and classification
of documents, automatic summarization, high-level semantic description, etc.

State-of-the-art keyword extraction approaches are based on statistical methods which require
learning from hand-annotated data sets. In the last decade the focus of research has shifted toward
unsupervised methods, mainly towards network or graph enabled keyword extraction. In a network
enabled keyword extraction the document representation may vary from very simple (words are
nodes and their co-occurrence is represented with links), or can incorporate very sophisticated
linguistic knowledge like syntactic [17] or semantic relations [118]. Typically, the source (document,
text, data) for keyword extraction is modelled with one network. This way, both the statistical
properties (frequencies) as well as the structure of the source text are represented by a unique
formal representation, hence a complex network .

A network (or graph, since the number of words in isolated documents is limited) enabled
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keyword extraction exploits different measures for the task of identifying and ranking the most
representative features of the source - the keywords . The keyword extraction powered by network
measures can be on the node, network or subnetwork level. Measures on the node level are: degree,
strength, centrality [96]; on the network level : coreness, clustering coefficient, PageRank motivated
ranking score or HITS motivated hub and authority score [80, 98, 106]; on the subnetwork level :
communities [87]. Most of the of the research was motivated with various centrality measures :
degree, betweenness, closeness and eigenvector centrality [80, 96, 98, 101, 106, 110].

Our research aims at proposing a novel selectivity based method for the unsupervised keyword
extraction from the network of Croatian texts. Since Croatian is a highly flective Slavic language, the
source text usually needs a substantial preprocessing (lemmatization - morphological normalization,
stopwords removal, part-of-speech (POS) annotation, morphosyntactic descriptions (MSD) tagging,
etc.), we design our approach with little or no linguistic knowledge. A new network measure -
the node selectivity, originally proposed by Masucci and Rodgers [11, 19] (that can distinguish
a real from a shuffled one), is applied to automatic keyword extraction. Selectivity is defined as
the average weight distribution on the links of the single node. In our previous work, the node
selectivity measure performed in favour of the differentiation between original and shuffled Croatian
texts [21, 50], and for the differentiation of blog and literature text genres [71]. In this work we
explore the potential of the selectivity for the keyword extraction in the Croatian news articles.
To the best of our knowledge, the node selectivity measure has not been applied to the keyword
extraction task before .

Section 9.3 presents an overview of related work on automatic keyword extraction. In Section
9.4 we present the definition of the measures for the network structure analysis. In Section 9.5 we
present the construction of co-occurrence networks from collection of used text. The methods used
for network based keyword extraction are explained in Section 9.6. The evaluation of obtained
keywords and results are in Section 9.7. In the final Section, we elaborate upon the selectivity
method and make conclusions regarding future work.

9.3 Related Work
Lahiri et al. [96] extract keywords and keyphrases form co-occurrence networks of words and
from noun phrases collocations networks. Eleven measures (degree, strength, neighbourhood size,
coreness, clustering coefficient, structural diversity index, page rank, HITS – hub and authority
score, betweenness, closeness and eigenvector centrality) are used for keyword extraction from
directed/undirected and weighted networks. The obtained results on 4 data sets suggest that
centrality measures outperform the baseline term frequency/inverse document frequency (tf-idf)
model, and simpler measures like degree and strength outperform computationally more expensive
centrality measures like coreness and betweenness .

Boudin [80] compares various centrality measures for graph-based keyphrase extraction. Ex-
periments on standard data sets of English and French show that simple degree centrality achieves
results comparable to the widely used TextRank algorithm; and that closeness centrality obtains the
best results on short documents . Undirected and weighted co-occurrence networks are constructed
from syntactically (only nouns and adjectives) parsed and lemmatized text using co-occurrence
window. Degree, closeness, betweenness and eigenvector centrality are compared to PageRank ad
proposed by Mihalcea in [106] as a baseline. Degree centrality achieve similar performance as much
complex TextRank. Closeness centrality outperforms TextRank on short documents (scientific
papers abstracts).

Litvak and Last [98] compare supervised and unsupervised approaches for keywords identi-
fication in the task of extractive summarization . The approaches are based on the graph-based
syntactic representation of text and web documents. The results of the HITS algorithm on a set of
summarized documents performed comparably to supervised methods (Naive Bayes, J48, Support
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Vector Machines). The authors suggest that simple degree-based rankings from the first iteration of
HITS, rather than running it to its convergence, should be considered.

Grineva et al. [87] use community detection techniques for key terms extraction on Wikipedia’s
texts , modelled as a graph of semantic relationships between terms . The results showed that the
terms related to the main topics of the document tend to form a community , thematically cohesive
groups of terms. Community detection allows the effective processing of multiple topics in a
document and efficiently filters out noise. The results achieved on weighted and directed networks
from semantically linked, morphologically expanded and disambiguated n-grams from the article’s
titles. Additionally, for the purpose of the noise stability, they repeated the experiment on different
multi-topic web pages (news, blogs, forums, social networks, product reviews) which confirmed
that community detection outperforms td-idf model.

Palshikar [110] proposes a hybrid structural and statistical approach to extract keywords from a
single document. The undirected co-occurrence network, using a dissimilarity measure between two
words, calculated from the frequency of their co-occurrence in the preprocessed and lemmatized
document, as the edge weight, was shown to be appropriate for the centrality measures based
approach for keyword extraction.

Mihalcea and Tarau [106] report a seminal research which introduced a state-of-the-art TextRank
model. TextRank is derived from PageRank and introduced to graph based text processing, keyword
and sentence extraction. The abstracts are modelled as undirected or directed and weighted co-
occurrence networks using a co-occurrence window of variable sizes (2..10). Lexical units are
preprocessed: stopwords removed, words restricted with POS syntactic filters (open class words,
nouns and adjectives, nouns). The PageRank motivated score of the importance of the node
derived from the importance of the neighboring nodes is used for keyword extraction. The obtained
TextRank performance compares favorably with the supervised machine learning n-gram based
approach.

Matsou et al. in [101] present an early research where a text document is represented as an
undirected and unweighted co-occurrence network. Based on the network topology, the authors
proposed an indexing system called KeyWorld, which extracts important terms (pairs of words) by
measuring their contribution to small-world properties. The contribution of the node is based on
closeness centrality calculated as the difference in small-world properties of the network with the
temporarily elimination of a node combined with inverse document frequency (idf).

Erkan and Radev [85] introduce a stochastic graph-based method for computing the relative
importance of textual units on the problem of text summarization by extracting the most important
sentences. LexRank calculates sentence importance based on the concept of eigenvector centrality
in a graph representation of sentences . A connectivity matrix based on intra-sentence cosine
similarity is used as the adjacency matrix of the graph representation of sentences. LexRank is
shown to be quite insensitive to the noise in the data.

Mihalcea in [104] presents an extension to earlier work [106], where the TextRank algorithm
is applied for the text summarization task powered by sentence extraction. On this task TextRank
performed on a par with the supervised and unsupervised summarization methods, which motivated
the new branch of research based on the graph-based extracting and ranking algorithms.

Tsatsaronis et al. [118] present SemanticRank, a network based ranking algorithm for keyword
and sentence extraction from text. Semantic relation is based on the calculated knowledge-based
measure of semantic relatedness between linguistic units (keywords or sentences). The keyword
extraction from the Inspec abstracts’ results reported a favorable performance of SemanticRank
over state-of-the-art counterparts - weighted and unweighted variations of PageRank and HITS.

Huang et al. [91] propose an automatic keyphrase extraction algorithm using an unsupervised
method based on connectedness and betweeness centrality.
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9.3.1 Related Work on the Croatian Language

The keyphrase extraction for¸ the Croatian language has been addressed in both supervised [76] and
unsupervised [77, 107, 114] settings. Ahel et al. [76] use a Naive Bayes classifier combined with
tf-idf (term frequency/inverse document frequen-cy), [107] utilizes the part-of-speech (POS) and
morphosyntactic description (MSD) tags filtering followed by tf-idf ranking, and [114] exploits the
distributional semantics to build topically related word clusters, from which they extract keywords
and expand them to keyphrases. Bekavac et al. [77] propose a genetic programming approach
for keyphrases the extraction for the Croatian language on the same data set. GPKEX can evolve
simple and interpretable keyphrase scoring measures that perform comparably to other machine
learning methods for Croatian. Reported research on extraction of Croatian keywords use a data set
composed of Croatian news articles from the Croatian News Agency (HINA), with hand annotated
keywords by human experts.

9.4 The Complex Network Analysis

This Section describes the basic network measures that are necessary for understanding our approach.
More details about these measures can be found in [19, 67]. In the network, N is the number of
nodes and K is the number of links. In weighted language networks every link connecting two
nodes i and j has an associated weight wi j which is a positive integer number.

The node degree ki is defined as the number of edges incident upon a node. The in degree and
out degree kin/out

i of node i is defined as the number of its in and out neighbours.
Degree centrality of the node i is the degree of that node. It can be normalised by dividing it by

the maximum possible degree N−1:

dci =
ki

N−1
. (9.1)

Analogue, the in/out degree centralities are defined as in/out degree of a node :

dc(in/out)
i =

k(in/out)
i
N−1

. (9.2)

Closeness centrality is defined as the inverse of farness, i.e. the sum of the shortest distances
between a node and all the other nodes. Let di j be the shortest path between nodes i and j. The
normalised closeness centrality of a node i is given by :

cci =
N−1

∑i 6= j di j
. (9.3)

Betweenness centrality quantifies the number of times a node acts as a bridge along the shortest
path between two other nodes. Let σ jk be the number of the shortest paths from node j to node k and
let σ jk(i) be the number of those paths that pass through the node i. The normalised betweenness
centrality of a node i is given by :

bci =
∑i 6= j 6=k

σ jk(i)
σ jk

(N−1)(N−2)
. (9.4)
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The strength of the node i is a sum of the weights of all the links incident with the node i:

si = ∑
j

wi j. (9.5)

All given measures are defined for directed networks, but language networks are weighted,
therefore, the weights should be considered. In the directed network, the in/out strength sin/out

i of
the node i is defined as the number of its incoming and outgoing links, that is:

sin/out
i = ∑

j
w ji/i j. (9.6)

The selectivity measure is introduced in [19]. It is actually an average strength of a node. For
the node i the selectivity is calculated as a fraction of the node weight and node degree :

ei =
si

ki
. (9.7)

In the directed network, the in/out selectivity of the node i is defined as :

ein/out
i =

sin/out
i

kin/out
i

. (9.8)

9.5 Methodology
9.5.1 Data

For the network based keyword extraction we use the data set composed of Croatian news articles
[107]. The data set contains 1020 news articles from the Croatian News Agency (HINA), with
manually annotated keywords (key phrases) by human experts. The set is divided: 960 annotated
documents for learning of supervised methods, and 60 documents for testing. The test set of 60
documents is annotated by 8 different experts, where the inter-annotator agreement in terms of F2
scores (see Section 5) are in average 46% (between 29.3% and 66.1%).

We selected the first 30 texts from the HINA collection for our experiment. The texts required
some preprocessing: parsing only textual part and title part excluding annotations, cleaning of
diacritics and symbols (w instead of vv, ! instead of l, etc.) and lemmatization. Non-standard word
forms numbers, dates, acronyms, abbreviations etc. remain in text, since the method is preferably
resistant to the noise presented in the data source.

The selected 30 texts varied in length: from very short 60 tokens up to 800 tokens (318 tokens
in average). The number of keywords per document varies between 9 and 42 (24 in average). One
annotator in average annotated 10 keywords per document.

9.5.2 The Construction of Co-occurrence Networks
Text can be represented as a complex network of linked words: each individual word is a node and
interactions amongst words are links. Co-occurrence networks exploit simple neighbour relation,
two words are linked if they are adjacent in the sentence [18]. The weight of the link is proportional
to the overall co-occurrence frequencies of the corresponding word pairs within a corpus.

From the documents in the HINA data set we construct directed and weighted co-occurence
networks: one from the text in each document and an integral one from the texts in all documents;
31 in total.
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TOP 10 TOP 24
R[%] P[%] F1[%] F2[%] R[%] P[%] F1[%] F2[%]

In-degree 0 0 0 0 0.19 33.33 0.38 0.24
Out-degree 0 0 0 0 0.37 40.00 0.73 0.46
Closeness 0 0 0 0 0.75 66.67 1.48 0.93

Betweenness 0.19 50.00 0.38 0.24 0.37 50.00 0.73 0.46
In/out selectivity 0.75 40.00 1.47 0.93 1.31 29.17 2.51 1.62

Table 9.1: The top 10 and top 24 highly ranked keyword candidates form in-degree, out-degree,
closeness, betweenness and in/out selectivity values obtained from all the HINA texts’ network in
terms of Recall (R), Precision (P), F1 and F2 score.

Network construction and analysis was implemented with the Python programming language
using the NetworkX software package developed for the creation, manipulation, and study of the
structure, dynamics and functions of complex networks [8].

9.6 Keyword Extraction

9.6.1 Centrality Motivated Keyword Extraction

Network based keyword extraction methods exploit different measures for the task of identification
and ranking the most representative features of the source - the keywords. The first part of our
research compares the performance of different centrality motivated network measures (in/out
degree, closeness and betweenness) with the performance of proposed selectivity measure. The
second part develops a selectivity based method for keyword extraction with a comparative analysis
of unsupervised (non-network enabled) approaches.

The degree (Eq. 9.1 and 9.2) of a node (word) is the number of neighbouring nodes (different
neighbouring words). Typically, the nodes with the highest degree in the network are hubs,
analogously the words with the highest degree are expectedly stopwords. The closeness (Eq. 9.3) of
a node (word) is related to the farness of the word from all other words in the text. The betweenness
(Eq. 9.4) of a node (word) is the measure of how many shortest paths between all other node-
pairs are traversing a node. The words with the highest values of the betweenness centrality are
considered to be important for the information flow as well. Selectivity is a local (node level)
network measure, defined as the ratio of the node strength and the node degree. In weighted
and directed co-occurrence networks one can consider the in- and out- links for obtaining in/out
selectivity of the node (Eq. 9.8). The computation of the node’s selectivity value is less complex
and expensive than the computation of closeness and betweenness values.

From the network constructed from all the texts in the HINA news data set we calculate in/out
degree, closeness, betweenness and in/out selectivity. Based on the obtained values we rank the top
10 or the top 24 keyword candidates from the network and evaluate them on the set of manually
annotated keywords, as presented in Table 9.1. The top 10 or the top 24 keywords are selected due
to the average number of human assigned keywords: in average 10 keywords from one annotator
and in average 24 keywords from all 8 annotators per document. We evaluate the performance
of each network measure based on standard recall (R), precision (P) and F1 score. F1 score is
a harmonic mean of precision and recall: F1 = 2PR/(P+R). Beside the standard F1 score we
also calculate the F2 score, which gives twice as much importance to the recall as to the precision:
F2 = 5PR/(4P+R).

The results in Table 9.1 are in favour of the selectivity over other standard centrality network
measures. The selectivity can efficiently differentiate between two basic types of nodes (words).
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The nodes with high strength and high degree values, have low selectivity and they are usually
closed-class words (e.g. stopwords, conjunctions, prepositions). The nodes with high strength
and low degree have high selectivity values. Typically, the highest selectivity value nodes are
open-class words which are preferred keyword candidates (nouns, adjectives, verbs) or even part
of collocations, keyphrases, names, etc. On the other hand, the highest ranked words with in/out
degree, closeness and betweenness are stopwords, which are not suitable keyword candidates. For
example the top 10 ranked words according to in-degree centrality are: to be, and, in, on, which,
for, but, this, self, of ; according to betweenness they are: to be, and, in, on, self, this, which, for,
Croatian, but; according to in/out selectivity they are: Bratislava, area, Tuesday, inland, revolution,
verification, decade, Balkan, freedom, Universe.

In short, it seems that selectivity is insensitive to stopwords (the most frequent function words,
which do not carry strong semantic properties, but are needed for the syntax of language) and
therefore can efficiently detect semantically rich open-class words from the network and extract
better keyword candidates.

9.6.2 Selectivity Based Keyword Extraction

The second part of our research develops a selectivity based method for keyword extraction. In
order to compare the selectivity based extraction to non-network based approaches (unsupervised
machine learning methods) we construct 30 networks (directed and weighted) from the 30 texts in
the HINA data set and evaluate with manually annotated keyword sets .

From 30 networks we compute in/out selectivity for all nodes. The nodes are ranked according
to the highest in/out selectivity values above a threshold value. Preserving the same threshold value
(≥ 1) in all documents resulted in different number of nodes (one word long keyword candidates)
extracted per each network. The obtained set of one word long keyword candidates is noted as
SET1.

Then, for every filtered node we detect neighbouring nodes: for the in-selecti-vity we isolate one
neighbour node with the highest outgoing weight; for the out-selectivity we isolate one neighbour
node with the highest ingoing weight. The result of in/out selectivity extraction is a set of ranked
word-tuples - SET2. Word-tuples are two-word long sequences of keyword candidates . From the
obtained tuples we filtered out those containing stopwords in order to compare with the manually
annotated evaluation set.

9.7 Evaluation and Results

For the keyword extraction task the strategy "more is better" can be utilized, since there is no
objective judgement on keywords. Hence, it is preferable to extract more keywords which makes
trade a off between precision and recall of the methods. The second polemic issue of keyword
extraction task is: shorter keywords are more general vs. longer which are more accurate. Motivated
by these open arguments, and by the approach of other authors, we decided to follow the same
principle: to extract as many keyword candidates as possible and evaluate them on the basis of
recall (R) and F2 score, beside the standard precision (P) and F1 score.

Evaluation is the final part of the experiment based on the intersection of the obtained sets SET1
and SET2 of keyword candidates with the union of all 8 annotators keywords. The results in terms
of precision and recall are in Figures 9.1 and 9.2 respectively, and in terms of F1 and F2 scores in
Figures 9.3 and 9.4 respectively. The obtained average F1 score for the SET 1 is 24.63%, and the
average F2 score is 21.19%. The expansion of obtained candidates to SET2 increased the average
F1 score to 25.9% and F2 score to 24.47%.

All supervised and unsupervised methods reported on keyphrases extraction from the HINA
data set incorporate the linguistic knowledge (POS, MSD,..) of Croatian. Mijić et al. [107] initially
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Figure 9.1: Precision on the SET1 (1 word candidates) and SET2 (2 word-tuples candidates) per 30
documents.

Figure 9.2: Recall on the SET1 (1 word candidates) and SET2 (2 word-tuples candidates) per 30
documents.
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Figure 9.3: F1 score of the SET1 (1 word candidates) and SET2 (2 word-tuples candidates) per 30
documents.

extracted the list of keyword candidates as a comprehensive list of all words without stopwords)
which was expanded into longer n-gram sequences up to a length of four. In [107] a keyphrase
extraction system developed for a large-scale Croatian news production system the tf-idf ranking
model was used to extract n-grams of up to length of four, which were lemmatized, and POS and
MSD filtered. For evaluation the manually annotated key phrases from 60 documents were used.
The evaluation set was reduced to keywords suggested only by 3 top annotators (having the highest
inter-annotator agreement among all 8 annotators). The results indicate that the performance is
comparable to that of the human annotators. Ahel et al. [76] for the one-word long keywords
reported precision of 22% and recall of 3.4%.

We designed our method purely from statistical and structural information encompassed in
the source text which is reflected in the structure of the network. Our method achieved on a SET1
average recall of 19.53% and precision of 39.1%. Expansion to the word-tuples in SET2 increased
average recall to 23.87% and decreased precision to 32.23%. The obtained results are comparable
to [107] and [76], but with a slightly different evaluation set up.

The obtained selectivity based results are promising and have potential to improve in several
directions which is elaborated at the end of the next Section. An additional remark regarding results,
is that beside keyword candidates our method captures personal names and entities, which were not
marked as keyphrases and lowered the score. Capturing names and entities can be of high relevance
for the tasks such as name-entity recognition, text summarization, etc.

Keyword annotation is an extremely subjective task as even human experts have difficulties to
agree upon keyphrases (inter-agreement around 40%). Croatian is a highly morphologically rich
language, which puts another magnitude of challenge on the task, since annotators are freely choos-
ing the morphological word form as a tag, which seems appropriate at the moment. Additionally,
there was no predefined set of index or keywords list, so annotators could make up their own, even
worse in some cases it seemed appropriate to annotate with keywords, which were not present in
the original article (out-of-vocabulray words). In [76] the number of out-of-vocabulary keywords
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Figure 9.4: F2 score of the SET1 (1 word candidates) and SET2 (2 word-tuples candidates) per 30
documents.

on the whole of the HINA data set is estimated to a high of 57%. Since our method is derived
from purely text statistics, it is not capable to capture all the possible subjective variations of the
annotators or out-of-vocabulary words. Still it is close to the range of the inter-annotator achieved
agreement .

9.8 Conclusion

This research on selectivity based keyword extraction for Croatian news (HINA data set) describes
an unsupervised method which extracts nodes from a complex network as keyword candidates. We
build our approach with a new network measure - the node selectivity (defined as the average weight
distribution on the links of the single node). The node selectivity value is used for extracting and
ranking the keyword candidates. Initially, we compare selectivity extraction to standard centrality
motivated measures, and propose the selectivity measure for the keyword extraction.

The selectivity based keyword extraction method is comprised of: the extraction of the seed
keyword set (words with the highest in/out selectivity) and expanding them to word-tuples with
the highest in/out selectivity values. The obtained average F1 score for the set of extracted
keyword candidates is 24.63%, and the average F2 score is 21.19%. The expansion of the obtained
candidates to word-tuples increased the average F1 score to 25.9% and F2 score to 24.47%,
which is comparable to the results on the same data set achieved by supervised and unsupervised
methods, and is close to the range of the inter-annotator achieved agreement. The selectivity based
extraction does not require linguistic knowledge as it is purely derived from statistical and structural
information encompassed in the source text which is reflected in the structure of the network.

Our results imply that the structure of the network can be applied to the Croatian keyword
extraction task with many possible improvements. This should be thoroughly examined in future
work, which will cover: a) evaluation - considering all flective word forms; considering various
matching strategies - exact, fuzzy, part-of-match; b) text types - considering texts of varying length,



9.8 Conclusion 99

genres and topics; c) multitopic - comparing isolate document extraction vs. multitopic extraction;
d) other languages - testing on standard English (and other) data sets; e) longer keyword candidate
sets - constructing keyword sequences up to a length of 3; f) entity extraction - testing weather
entities can be extracted from complex networks.





10. Comparison of the Language Networks from
Literature and Blogs

10.1 Abstract

In this Chapter we present the comparison of the linguistic networks from literature and blog
texts. The linguistic networks are constructed from texts as directed and weighted co-occurrence
networks of words. Words are nodes and links are established between two nodes if they are
directly co-occurring within the sentence. The comparison of the networks structure is performed
at global level (network) in terms of: average node degree, average shortest path length, diameter,
clustering coefficient, density and number of components. Furthermore, we perform analysis on the
local level (node) by comparing the rank plots of in and out degree, strength and selectivity. The
selectivity-based results point out that there are differences between the structure of the networks
constructed from literature and blogs.

10.2 Introduction

The representation and analysis of written texts in terms of graphs and complex networks offers an
alternative approach for studying the language with different applications in the domain of natural
language processing (NLP). Various types of linguistic networks have already been studied: syntax
networks [23, 24], semantic networks [3], phonological networks [25], syllable networks [30, 31],
word co-occurrence networks [7, 9–11, 14, 18, 19, 21, 36–38, 138, 139]. In [3, 5, 22] a systematic
methodological overview of linguistic complex networks principles is presented. Recently, linguistic
co-occurrence networks have been intensively studied in order to analyse the structure of the
language [7, 9–11, 14, 18, 19, 21, 36–38, 138, 139].

As the networks incorporate associations between words and concepts, their structure, quantified
by global and local network measures [140], such as clustering coefficient, shortest path, diameter,
density, node degree, can provide information on some properties of the text . The motivation of
our research was to find which network measures are sensitive on different texts categories.

In our previous research [18, 21] we showed the advantages of using a directed and weighted
co-occurrence network as the model to capture the structure of a text. In this work we study global
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and local network measures for the networks constructed from different categories of texts. In
particular, at the local level, we applied the node selectivity measure in order to examine if it is
sensitive on different styles of texts. Node selectivity is defined as the average weight distribution on
the links of the single node [19]. Therefore, in our approach we constructed directed and weighted
co-occurrence networks from different texts: 4 books and 4 blogs. We compare global and local
network measures for book-blog network pairs.

In the Section 10.3 we present the overview of related work. In the Section 10.4 we present key
measures of complex networks. In the Section 10.5 the data and network construction techniques
are presented. In the Section 10.6 we present the results. In the last Section 10.7 we elaborate on
the obtained data and provide concluding remarks.

10.3 Related Work

Ferrer i Cancho and Solé in [9] first showed that the co-occurrence networks have a small average
path length, a high clustering coefficient, and a two-regime power law degree distribution; the
network exhibits small-world and scale-free properties. Drogotsev and Mendes [7] used co-
occurrence networks to study language as a self-organising network of interacting words. Masucci
and Rodgers in [11] investigated the co-occurrence network topology of Orwell’s ’1984’ focusing
on the local properties: nearest neighbours and the clustering coefficient. Furthermore, in [19] they
introduced the node selectivity measure that can distinguish the difference between normal and
randomised text. Liu and Cong [10] constructed co-occurrence networks from text in different
languages and used complex network parameters for the classification (hierarchical clustering) of
14 languages, where Croatian was amongst 12 Slavic.

Different applications of linguistic network analysis in NLP includes: evaluation of language
complexity [138], automatic summarisation [37], evaluation of machine translation [139], author-
ship attribution [36] and text quality analysis [38]. Costa et al. [138] studied the relationship
between the topology of network and complexity of the text. They studied texts with different
levels of simplification in co-occurrence networks and found that topological regularity correlated
negatively with textual complexity.

In [37] the authors describe a method that uses complex networks concepts for the summari-
sation task. In [139] several metrics from complex networks are exploited in order to evaluate
the quality of translations. The best distinctions were obtained with the out-degree, in-degree,
minimum path and cluster coefficient. In [36] authors investigate the correlation between the
properties of networks and author characteristics. It is shown that the networks produced for
each author are sensitive to specific features, which indicates that complex networks can capture
author characteristics and, therefore, could be used for the authorship identification. In [38] authors
investigate the possibility of automated evaluation of text quality using topological measurements
extracted from the corresponding complex networks. All the measures are correlated with grades
assigned by human experts. The results indicate that, the presented approach has a potential to be
used in the process of text quality evaluation.

10.4 The Network Structure Analysis

This Section contains explanations of the most important measures for network analysis. Every
network has an N number of nodes and K number of links. Considering the fact that our networks
are weighted every link connecting two nodes has an associated weight. The degree of a node i is
the number of links with which the node is connected, ki. In the case of the directed network, there
are two kinds of the degree: the in-degree, kin

i corresponding to the number of incoming links and
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the out-degree, kout
i equal to the number of outgoing links. The average degree of the network is:

< k >=
2K
N

. (10.1)

For every two connected nodes i and j the number of links lying on the shortest path between
them is represented as di j, and so di is the average distance of a node i from all other nodes, and it’s
obtained by:

di =
∑i6= j di j

N
. (10.2)

For the next two measures, if a network contains more than one component, we consider the
largest component. The average shortest path length between every two nodes in network is:

L =
1

N(N−1) ∑
i6= j

di j, (10.3)

and the maximum distance results in the network diameter, D:

D = maxidi. (10.4)

The clustering coefficient is a measure which defines the presence of connections between the
nearest neighbours of a node. And so, ci (clustering coefficient) of a node is a fraction between the
number of edges Ei that exist between that ki and the total possible number :

ci =
2Ei

ki(ki−1)
. (10.5)

The average clustering of a network is defined as the average value of the clustering coefficients
of all nodes in a network:

C =
1
N ∑

i
ci. (10.6)

Density of network is a measure of network cohesion defined as the number of observed
relationships divided by the number of possible relationships

d =
K

N(N−1)
. (10.7)

Strength of the node i is the number of its outgoing and incoming links (sum of its weights).
We define the in-strength and the out-strength:

sout/in
i = ∑

j
wi j/ ji. (10.8)

Node selectivity is a measure introduced in [11] that can capture the effective distribution of
numbers in the weighted adjacency matrix, and it’s obtained as a ratio of node strength and its
degree :

eout/in
i =

sout/in
i

kout/in
i

. (10.9)

In order to illustrate the relationships between node degree, node strength and node selec-
tivity, we constructed a small network of seven nodes presented in Figure 10.1. Additionally,
Table 10.1 contains values of in-degree, out-degree, in-strength, out-strength and in-selectivity and
out-selectivity for all seven nodes in the network presented in Figure 10.1.
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Figure 10.1: Weighted and directed co-occurrence network of seven nodes.

NODE kin kout win wout sin sout

i 1 4 1 7 1 1,75
do 1 2 3 2 3 1

will 1 1 2 1 2 1
want 2 0 2 0 1 0

know 1 0 1 0 1 0
go 1 0 1 0 1 0
be 1 0 1 0 1 0

Table 10.1: Values of in/out - degree, strength and selectivity.

10.5 Network Construction

10.5.1 Data

Our corpus contains 4 books written or translated into the Croatian language, and 4 blog texts
written in Croatian language. The books are: Picture of Dorian Gray, Bones, The Return of Philip
Latinowicz and Mama Leone. The blogs are: Index.hr, Slobodna Dalmacija, Narodne novine and
Gospodarski list (daily newspaper portal, or business portal). The feature which prompted us to do
the comparison is the linguistic distinction between book and blog. Books are written in formal
language, standard expressions and phrases are used, whilst blogs are mostly written in a casual
mode, with the use of slang, the shortenings of the words or mistakes in syntax. Books come in
different sizes and so we compared them with the approximately same sized blog (with the same
number of different words), which means we had 4 book-blog pairs for comparison. The sizes
of books and blogs in number of total words are shown in the first row of Table 10.2, while the
numbers of different words are presented in the second row (as the number of nodes).
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Measure Text

Bones
Gospodarski

list
Mama
Leone

Narodne
novine

Number of different words 191 986 199 417 85 347 146 731
Number of nodes (N) 27396 27727 13067 13036
Number of edges (K) 102052 105171 49383 55661

Average degree (< k >) 7,45 7,58 7,56 8,54
Avg. shortest path (L) 3,21 3,28 3,11 3,17

Diameter (D) 10 21 10 12
Avg. clust. coeff. (C) 0,25 0,22 0,29 0,22

Density (d) 0,0002 - 0,00056 0,00066
No. connect. compon. 15 7 1 2

Measure Text

Picture of
Dorian Gray Index.hr

Return of
Phillip

Latinowicz
Slobodna
Dalmacija

Number of different words 75 099 118 548 28 137 44 367
Number of nodes (N) 15631 15065 9531 9553
Number of edges (K) 46201 28972 21760 25155

Average degree (< k >) 3,88 3,85 4,57 5,27
Avg. shortest path (L) 3,45 3,45 3,59 3,56

Diameter (D) 14 22 16 13
Avg. clust. coeff. (C) 0,18 0,016 0,15 0,17

Density (d) 0,0004 0,0002 0,00048 0,00055
No. connect. compon. 1 45 5 3

Table 10.2: The comparison of network measures for book-blog network pairs.

10.5.2 The Construction of Co-occurrence Networks
We used Python and the NetworkX software package developed for the creation, manipulation,
and study of the structure, dynamics, and functions of complex networks [8]. The first step in
creating networks was text ’cleaning’: normalising symbols for Croatian diacritics (č, ć, ž, d̄, and
š), removing special symbols and removing punctuation which does not mark the end of a sentence.
We created 8 networks, weighted and directed. Nodes are words that are linked if they are direct
neighbours in a sentence. The next step was creating the networks as weighted edgelists , which
contain all the pairs of connected words and their weights (the number of connections between two
same words).

10.6 Results

In this Section we present the results of our measuring described in Section 2, such as average
degree < k >, average path distance L, diameter D, and the average clustering coefficient C, density
d, node strength si and node selectivity ei. In Table 10.2 we present the estimated global network
measures. There are certain differences between measures for book-blog network pairs, but there is
no uniform rule that may be used to differentiate between these two styles of writing.

Furthermore, we compare networks on the node-level using degree, strength and selectivity
measures. For the purpose of comparison we used rank plots. The in/out-degree rank function
represents the relationship function between the rank and the in/out-degree of the degree sequence of
all nodes sorted in decreasing order. Similarly, the in/out-strength rank plot and the in/out-selectivity
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Figure 10.2: In-degree and out-degree rank plots.

Figure 10.3: In-strength and out-strength rank plots.

rank plot are defined.
The results of the comparisons of the in-degree rank plot and the out-degree rank plot for one

book-blog network pair are shown in Figure 10.2. The plots do not show significant difference
for the in-degree nor for the out-degree rank plots between book-blog network pair. We also
experimented with additional three book-blog pairs and we obtained similar results (not reported
here due to limited space).

The results of the comparisons of the in/out-strength rank plot for the same book-blog network
pair are shown in Figure 10.3. Again, there is no difference. Except some small deviation that can
be noticed in the plot, but we cannot conclude that in/out-strength distinguish books from blogs.

The selectivity rank plots are shown in Figure 10.4 (in-selectivity) and in Figure 10.5 (out-
selectivity). The results show that there are differences in selectivity rank plots between networks
constructed from books and networks constructed from blogs for all 4 book-blog network pairs. In
general, all in/out-selectivity values are lower for books than for blogs. We disregarded nodes with
zero values of degree because it causes the division by zero (in total 4% of nodes).

10.7 Conclusion

In this work we analysed which complex network measure can distinguish between different text
categories: literature and blogs. Our results indicate that global network measures are not precise
enough to capture the structural differences between networks constructed from different text
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Figure 10.4: In-selectivity rank plots for 4 book-blog network pairs.

categories. Even the compared in/out- degree rank plots and in/out- strength rank plots do not
clearly show the differences. However, in-selectivity and out-selectivity rank plots indicate that
there are structural differences between networks constructed from books and networks constructed
from blogs.

Similar approaches of complex network based analysis have been used in certain applications
in the domain of NLP. In [138] it is shown that strength, shortest path, diversity and hierarchical
measures can make a distinction between normal text and simplified text. In [138] it is presented
how in-degree, out-degree, minimal path and clustering coefficient can be used for machine
translation evaluation. In [138] it is shown that out-degree, clustering coefficient and deviation
from linear dynamics in the network growth are correlated with the text quality. However, there
are no comprehensive studies focused on finding network measures that are sensitive to different
text categories. Our work is the first attempt to analyse whether the node selectivity measure can
differentiate between books and blogs networks. These results can be further tested on various
categories of texts.

For future work we will examine other local network measures that depend on the strength,
degree and link direction in combination with other measures such as clustering coefficient. Finally,
these results encourage us to investigate the complex network properties for text classification, text
evaluation or even text quality assessment.
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Figure 10.5: Out-selectivity rank plots for 4 book-blog network pairs.



11. Revealing the Structure of Domain Specific
Tweets via Complex Networks Analysis

11.1 Abstract

In this work we explore the relation between different groups of tweets using complex network
analysis and link prediction. The tweets were collected via the Twitter API depending on their
textual content . That is, we searched for the tweets in English language containing specific
predefined keywords from different domains. From the gathered tweets a complex network of
words was formed as a weighted network. Nodes represent words and a link between two nodes
exists if these two words co-occur in the same tweet, while weight denotes the co-occurrence
frequency. The Twitter search was repeated for four different search criteria (API queries based
on different tweet keywords), thus resulting in four networks with different nodes and links. The
resulting networks were subjects to further network analysis, as comparison of numerical properties
for different networks and link prediction for individual networks. This work shows the tweet
scraping process, our approach to building the networks, the measures we calculated for them, the
differences and similarities between different networks we built and our success in predicting future
links.

11.2 Introduction

Twitter is a popular online social network created in 2006 that enables user to send publicly visible
messages called "tweets" . One of the main characteristics that distinguishes Twitter from other
online social networks is the limit on tweet length. Twitter user are allowed to send tweets that have
a maximum of 140 characters. Hence, Twitter is often categorized as a micro-blogging platform . It
is estimated that in 2015 Twitter had over half a billion users. [141]

Because of its popularity, user-base size and vast amounts of tweets, Twitter has been studied
in the context of person-to-person relations [142], user influence [143], economic predictions [144],
predictions of political elections [145], conversational practices [146] and trends discovery [147] .

Another important research domain related to Twitter is sentiment analysis. In [149] Pak
et al. automatically collect from Twitter a corpus and perform linguistic analysis on it. Then
they build a sentiment classifier able to determine positive, negative and neutral sentiments for a
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document. There has been reported research in automatic classification of tweets regarding their
sentiment [148]. [150] gives a detailed revision of the field of sentiment analysis with Twitter
in focus. Research by Agarwal et al. [151] examines sentiment analysis on Twitter data. In it
the authors introduce POS-specific prior polarity features and explore the use of a tree kernel to
eliminate the need for laborious feature engineering. In [152] Kouloumpis et al. investigate the
utility of linguistic features for detecting tweets sentiment using a supervised approach, while also
leveraging existing hashtags in building training data . Wang et al. [153] present hashtag-level
sentiment classification which aims to automatically generate the overall sentiment polarity for a
given hashtag in a certain time period.

The following papers use the complex network analysis approach to Twitter data. Villazon et al.
in [154] look at Twitter as a complex network, calculating the cluster coefficient, power law and
average path length for it. [155] presents a model for describing the growth of scale-free networks.
The model is applied only after checking that Twitter is indeed a scale-free network, and for that
purpose the mentioned paper proposes a new heuristic method of finding the upper bounds of the
path lengths instead of computing the exact length .

In our approach we use complex networks analysis to reveal the structure of domain specific
tweets. The motivation of our research is to detect weather networks constructed from different
tweets domains have different structural properties. More precisely, the goal of this research is to
determine whether (and which) complex network measures can distinguish between networks of
tweets with "positive" and "negative" aspects. Possible applications of proposed approach can be in
the domain of sentiment analysis. Furthermore, link prediction enables anticipation of positive or
negative attitude propagation on Twitter.

We collect positive tweets in English language using keywords with positive polarity (e.g. joy,
happiness, ...) and negative tweets using keywords with negative polarity (e.g. anger, fear, ...).
Then we perform the global and local complex network analysis where we compare results for four
obtained networks. On the global level we use a standard set of network measures (e.g. diameter,
average path length, clustering coefficient). However, for the local level analysis we apply a node
selectivity measure encouraged by our previous findings [50, 59, 71] for which we show that it is an
important measure for language networks analysis and differentiation.

In the Section 11.3. we present the network measures used in our research. In the Section
11.4. we describe how we construct the tweet networks. The results and discussion are given in the
Section 11.5. Finally, the Section 11.6 contains conclusions and directions for the further research.

11.3 Networks Measures

Complex network is a graph with non-trivial topological features (e.g. high clustering coefficient,
low distances, heavy-tailed degree distribution, etc.). It can be represented with a graph G, defined
as a pair of two sets G = (V,E); the first set V consisting of vertices and the second set E consisting
of edges. N as the number of vertices in V and K as the number of edges in E. In the domain of
network analysis, the vertices are referred as nodes and the edges are called links.

Network analysis can be classified by the following three levels: macro-scale or global level,
meso-scale level and micro-scale or local level. In weighted complex networks every link connecting
two nodes u and v has an associated weight wuv. A node degree is the number of links directly
connected (or incident) to that node. The set of nodes incident to a node v is denoted as Γ(v). The
number of network components is represented by ω . Next, we present network measures that will
be used in the following sections.

The average network degree is the ratio of the number of links to the number of nodes. For
undirected networks we multiply this ratio by 2 since undirected links always have two incident
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nodes:

〈k〉= 2
K
N
. (11.1)

Network strength is simply the sum of all link weights in a network:

S = ∑
u,v∈V

wuv. (11.2)

For the average network strength we divide a networks strength with its number of nodes:

〈s〉= S
N
. (11.3)

Node selectivity for a node v corresponds to the sum of weights of all incident links divided by
that nodes degree (denoted as deg(v)):

e(v) =
∑u∈Γ(v) wuv

deg(v)
. (11.4)

Average network selectivity is the sum of all individual node selectivities divided by the number
of nodes:

〈e〉= ∑v∈V e(v)
N

. (11.5)

Network density is represented as the ratio between the number of existing links and the number
of all possible links:

d =
K

N(N−1)
. (11.6)

Average path length for a network, where duv denotes the number of links lying on the shortest
path between u,v ∈V , is computed as following:

L = ∑
u,v

duv

N(N−1)
. (11.7)

The network diameter represents the longest shortest path in a network (u,v ∈V ):

D = max(duv). (11.8)

The network radius denotes the shortest ε(v), where ε(v) is defined as the maximum distance
between v ∈V and any other node:

R = min(ε(v)). (11.9)
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Network transitivity where possible triangles are identified by the number of triads (two links
with a shared node) :

T = 3
#triangles

#triads
. (11.10)

Average clustering coefficient, where c(v) is the clustering coefficient for a node v, sums all the
individual clustering coefficients and divides them by the number of nodes:

C =
1
N ∑

v∈V
c(v). (11.11)

The global network efficiency is the reciprocal value of a networks average path length :

E =
1
L
. (11.12)

In the context of link prediction we use the following measures.
Weighted Common Neighbors, adapted from [156], where weights of links connecting u and v

to their common neighbors are summed :

CN(u,v) = ∑
z∈Γ(u)∩z∈Γ(v)

wuz +wvz. (11.13)

Weighted Jaccard’s Coefficient, adapted from [157], which divides the weighted Common
Neighbors value for u and v by the summed weights of all links incident to u and/or v :

JC(u,v) =
∑z∈Γ(u)∩z∈Γ(v) wuz +wvz

∑a∈Γ(u) wau +∑b∈Γ(v) wbv
. (11.14)

Lastly, we present the link prediction precision as the ratio between the number of correctly
predicted links and the total number of predicted links. That is, we divide the number of true
positives (|T P|) by the number of true and false positives (|T P|+ |FP|). [158]

Precision =
|T P|

|T P|+ |FP|
(11.15)

11.4 Networks Construction
The first step in constructing networks is the collection of data. Initially, we searched for four sets
of tweets according to the following criteria: a) tweets associated to recent immigrant and war
related events; b) tweets containing negatively polarized words; c) tweets associated to house pets
and d) tweets containing positively polarized words. The subset of positive and negative polarized
words is extracted from the sentiment lexicon in [159]. From now on we will refer to the networks
built from their respective sets as: a) emo-neta, b) emo-netb, c) emo-netc and d) emo-netd .

For the data collection process we use Python in combination with the Python Twitter Tools
package, which provides an easy-to-use interface for the official Twitter API. In the API request
arguments we specified we are searching for a mix of recent and popular tweets in the English
language. We scraped about 10000 tweets for each of four different queries, resulting in a dataset
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of 39882 tweets. It is worth to mention that the official Twitter API documentation states that the
language detection is based on the "best-effort" principle [160].

In the text (tweets) preparation step first we eliminate stopwords1, and from the remaining
text we compute the 100 most frequent words for each of the four subsets. We selected top 100
words as the reasonable list which provides the best trade-off between computation time and link
prediction results. Note that the former computation was case-insensitive and we used the list of
English stopwords presented at http://www.ranks.nl/stopwords.

From the words of preprocessed tweets extended with the set of explicit keywords (e.g. joy,
puppy) used for retrieving each of the tweets we form the nodes of the networks. Link between
two nodes (words) is established if these two word appear together in the same tweet. Weight
on the link represents words co-occurrence frequencies, that is, the number of tweets in which
two high-frequency words from the top 100 list co-occurred. That makes the generated networks
weighted and undirected . Hence, based on the high-frequency words, we generate four different
networks for each of the four data sets.

We build 16 distinct networks from four datasets: the first network is built from 25% of the data,
the second from 50%, the third from 75% and the fourth from 100% of the data in one dataset. We
will denote those networks, respectively, as emo-netx1, emo-netx2, emo-netx3 and emo-netx4, where
x ∈ {a,b,c,d}. That means we, as previously mentioned, generate a total of 16 different networks,
four per each dataset.

Some other used Python packages not previously mentioned are NetworkX [8] and LaNCoA
[161]. The first one is a popular Python tool for creating and manipulating complex networks. It
also provides a rich collection of functions for studying complex networks on various levels. The
LaNCoA toolkit provides procedures for construction and analysis of complex language networks .

11.5 Results
Global and local network measures
Here we present the computed global and local network measures for emo-neta4, emo-netb4, emo-netc4
and emo-netd4 . Table 11.1 shows the calculated measures that were previously described in Sec-
tion 11.3.

Measure emo-neta4 emo-netb4 emo-netc4 emo-netd4
N 101 101 103 104
K 3454 3958 2854 3848
〈k〉 68.396 78.3762 55.4175 74
〈s〉 1025.9406 830.505 747.0291 1310.25
〈e〉 29.4867 24.0104 42.9054 44.7693
d 0.684 0.7838 0.5433 0.7184
ω 1 1 1 1
L 1.316 1.2162 1.4582 1.2816
D 2 2 3 2
R 1 1 2 1
T 0.7965 0.875 0.7774 0.8595
C 0.0088 0.0208 0.0532 0.0077
A -0.1257 -0.0933 -0.0587 0.0442
E 0.7599 0.8222 0.6858 0.7803

Table 11.1: Global and local network measures.
1Stopwords are a list of the most common, short function words which do not carry strong semantic properties, but

are needed for the syntax of a language (pronouns, prepositions, conjunctions, abbreviations, ...).

http://www.ranks.nl/stopwords
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The first visualization we present (Figure 11.1) is for the node degrees across all emo-net4
networks. We see no major differences for node degrees across those networks.

Figure 11.1: Node degrees for all emo-net4 networks on a log-log scale.

Lets recall that emo-neta4 and emo-netb4 were based on data from queries with negative connota-
tions. In contrast, emo-netc4 and emo-netd4 were based on queries with positive connotations. The
most obvious difference between the first two "positive" and the last two "negative" networks in
Table 11.1 is 〈e〉, which represent the value of average network selectivity. 〈e〉 is notably lower
for emo-neta4 and emo-netb4 than for emo-netc4 and emo-netd4 . Average network selectivity can be
interpreted as how "heavy" the links across a network are. We see how our positive networks have
on average stronger ties between nodes.

In Figure 11.2 we visualize the node selectivities for the networks mentioned above. Note that
the plot in Figure 11.2 uses a log-log scale.

Figure 11.2: Node selectivities for all emo-net4 networks on a log-log scale.

Link prediction
Next we present the results for the link predictions. Here we computed the most likely future
links for emo-netx1, emo-netx2 and emo-netx3 where x ∈ {a,b,c,d}. The prediction were made using



11.6 Conclusion 115

two measures: weighted Common Neighbors (Table 11.2) and weighted Jaccard’s Coefficient
(Table 11.3). The definitions of both measures can be found in Section 11.3.

We will briefly describe the link prediction process which is the same for both measures. First
compute the ranks for all non-existing links in emo-netxi , x ∈ {a,b,c,d}, i ∈ {1,2,3}. Generate the
first set that contains the top n ranked non-existing links in emo-netxi (n is the number of new links
in emo-netxi+1). Next, generate the second set that holds links which appear in emo-netxi+1 but not
in emo-netxi . Calculate the prediction precision by looking at the intersection of the first and second
set.

Network emo-neta emo-netb emo-netc emo-netd

(25%) emo-net1 29.96% 45.92% 30.13% 26.84%
(50%) emo-net2 24.57% 34.88% 21.43% 17.73%
(75%) emo-net3 28.49% 27.49% 18.4% 13.45%

Table 11.2: Prediction precision based on the weighted Common Neighbors measure.

Network emo-neta emo-netb emo-netc emo-netd

(25%) emo-net1 35.88% 47.96% 37.95% 50.26%
(50%) emo-net2 29.69% 37.72% 28.97% 41.14%
(75%) emo-net3 12.85% 32.16% 30.06% 32.75%

Table 11.3: Prediction precision based on the weighted Jaccard Coefficient measure.

We see from Tables 11.2 and 11.3 that all predictions had a precision rate above 10%, with
some going as high as 50%. The predictions are, by a large margin, most precise for emo-net1
networks. Generally, those networks will not have all of the probable links already in them. With
more data all the probable links are added. In most cases the prediction precision for networks with
more links tends to fall. That is the only obvious trend for precision rates across query domains,
network sizes and prediction measures.

11.6 Conclusion
In this Chapter we present how we construct multiple complex networks based on four different
data sets. Each data set featured a collection of tweets gathered by predefined Twitter API queries.
Two of those queries retrieved "negative" oriented tweets, while the other two gathered "positive"
oriented tweets. We investigate global and local network measures across four query categories and
compare them between "negative" and "positive" networks. In this Chapter we also predict future
links for networks across all query domains. For that purpose we use networks built form a lower
percentage of data and compare them with networks built from a higher percentage of the same
data.

Regarding network measures, we found that the average network selectivity is the only measure
that discriminates between "negative" and "positive" networks, favoring the positive ones. This
preliminary results indicate that selectivity based network measures could be used in the Twitter
sentiment analysis tasks.

The link prediction process gave no obvious patterns, except the higher prediction precision for
networks built from the smallest amount of data. Also, for all of our networks the link prediction
precision was above 10%. It should be noted that all our results are preliminary and a more complex
analysis would be in order. Such analysis should primarily consider larger and more diverse data
sets. Expanding the list of computed network measures would be also worth considering, along
with community detection algorithms.





12. Link Prediction on Twitter

12.1 Abstract

With over 300 million active users, Twitter is among the largest online news and social networking
services in existence today. Open access to information on Twitter makes it a valuable source
of data for research on social interactions, sentiment analysis, content diffusion, link prediction,
and the dynamics behind human collective behaviour in general. Here we use Twitter data to
construct co-occurrence language networks based on hashtags and based on all the words in tweets,
and we use these networks to study link prediction by means of different methods and evaluation
metrics. In addition to using five known methods, we propose two effective weighted similarity
measures, and we compare the obtained outcomes in dependence on the selected semantic context
of topics on Twitter. We find that hashtag networks yield to a large degree equal results as all-word
networks, thus supporting the claim that hashtags alone robustly capture the semantic context of
tweets, and as such are useful and suitable for studying the content and categorization. We also
introduce ranking diagrams as an efficient tool for the comparison of the performance of different
link prediction algorithms across multiple datasets. Our research indicates that successful link
prediction algorithms work well in correctly foretelling highly probable links even if the information
about a network structure is incomplete, and they do so even if the semantic context is rationalized
to hashtags.

12.2 Introduction

Our cumulative culture relies on our ability to carry the knowledge from previous generations
forward. For millennia, we have been upholding a cumulative culture, which leads to an exponential
increase in our cultural output [162], and it has given us evolutionary advantages that no other
species on the planet can compete with. Unprecedented technological progress and scientific
breakthroughs today make the amount of information to carry forward staggering. This requires
information sharing, worldwide collaboration, the algorithmic prowess of search engines, as well
as the selfless efforts of countless volunteers to maintain, categorize, and help navigate what we
know. The task is made easier by the fact that much of what we know has been digitized [163, 164].
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The combination of data deluge with recent advances in the theory and modeling of social systems
and networks [42,165–172] enables quantitative explorations of our culture that were unimaginable
even a decade ago. Recent research has been devoted to enhanced disease surveillance [173],
the spreading of misinformation [174, 175], to study human mobility patterns [176, 177] and the
dynamics of online popularity [178], to quantify trading behavior [179, 180] and the dynamics
of our economic life [181], as well as to study universality in voting behavior [182], political
polarity [183] and emotional blogging [184, 185], to name just some examples.

The openness of Twitter to research has made it an important source of data for innovative
data-driven research that lifts the veil on how we share information, how and with whom we
communicate, and essentially on how we live our lives . Twitter was created in 2006, enabling users
to send short publicly visible messages called tweets. Tweets typically consist of text, links (i.e.
URLs), user mentions (with @ sign), retweet information (RT) and hashtags. Hashtags are marked
with the # sign and are used for meta tagging, which enables users to find a specific theme or
content [186] . Hashtags are neither limited nor do they have a predefined structure or content. Still
they often capture the very essence of posted messages, much like keywords or keyphrases do [187],
and they can be used effectively to monitor trends of topics on Twitter [147] as well as the polarity
of tweets [153] . So far, Twitter data has been used to study the growth mechanisms of social
interactions [155], for assessing user influence [143], for recommending (predicting) whom to
follow [188], for information propagation [189], as well as for sentiment analysis [145, 150, 153].

Here we use Twitter data to study link prediction in the realm of co-occurrence language
networks based on hashtags and based on all the words in tweets . Link prediction refers to inferring
the future relationships from nodes in the complex network, or more formally, to estimate the
likelihood of the existence of a link between two nodes based on the observed network structure
and node attributes. A comprehensive review of link prediction methods is provided in [190]. In
addition to relying on topological properties of networks, the problem was also addressed by the
means of various machine learning techniques [157, 191]. Typical networks addressed by means of
link prediction methods include protein-protein interaction networks and social networks, where one
can predict longitudinal changes over time [190, 192–195]. While local similarity measures have
traditionally been explored for unweighted networks, recently weighted local similarity measures
have attracted more attention [156, 157, 196–198] . In line with these trends, we therefore focus on
weighted local similarity measures for the prediction of links in the networks constructed from the
content of tweets.

In addition to using five known methods, namely the weighted common neighbors (CN), the
weighted Jaccard coefficient (JC), the weighted preferential attachment (PA), the weighted Adamic-
Adar (AA) and the weighted resource allocation index (RA) [156, 157, 199], we also propose
selectivity (SE) [11] and inverse selectivity (IS) as two effective weighted similarity measures.
Selectivity is defined as the average weight distributed on the links incident to the single node,
and has proven efficient for different language network tasks, ranging from the differentiation
between original and shuffled text [21] to the differentiation of text genres [200] and for keyword
extraction [201, 202]. We also note that link prediction on Twitter has been studied before in [203],
where CN, AA, JC and RA measures were combined with the information about corresponding
communities as determined with a variant of the label propagation algorithm in unweighted and
directed networks. It was shown that this leads to an improvement of the area under the receiver
operating characteristic curve (AUC) when structural measures are accompanied with community
information to train supervised data mining models for link prediction. In [194] an approach
has been proposed to predict future links in Twitter reciprocal reply networks by applying the
covariance matrix adaptation evolution strategy to optimize weights based on neighbourhood and
node similarity indices. It was shown that this method is suitable for predicting future followers on
social networks.
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As we will show after describing the Methods, our research reveals that hashtag networks
yield to a large degree equal results as all-word networks, therefore supporting the claim that
hashtags alone robustly capture the semantic context of tweets, and as such are useful and suitable
for studying the structure of tweets. We will also show how introducing ranking diagrams is an
efficient tool for the comparison of the performance of different link prediction algorithms across
multiple datasets.

12.3 Methods
The network G = (V,E) is a pair of a set of nodes V (or vertices) and a set of links E (or edges),
where N is the number of nodes and K is the number of links. In weighted networks every link
connecting two nodes u and v has an associated weight wuv. A node degree deg(u) is the number
of links incident to node u and the set of neighbor nodes to a node u is denoted as Γ(u). The
strength of a node su is the sum of weights of all the links incident to u. More details about complex
networks analysis can be found in [67] and all measures used for the quantification of the studied
networks properties are listed in S1 Text.

There are various approaches for the link prediction task based upon similarity measures [190,
193]. In general each pair of nodes u and v (u,v ∈ V ) is assigned a score puv which is directly
defined as the similarity between nodes u and v. Then the link prediction task is to determine
whether the link between u and v will be established according to the descending order of assigned
scores puv. Next we define seven link prediction measures used in this study.

In the weighted common neighbors (CN) link prediction measure weights of links connecting
nodes u and v to their common neighbors z are calculated as in [156]:

CN(u,v) = ∑
z∈Γ(u)∩z∈Γ(v)

(wuz +wvz) (12.1)

where Γ(u) and Γ(v) are the sets of neighbors of nodes u and v. CN measures the number of
neighbors that two nodes have in common, while for the weighted CN the sum of weights is used
instead. CN is the simplest but at the same time computationally undemanding measure which
serves as a baseline for link prediction.

The weighted Jaccard coefficient (JC) adapted from [157], divides the weighted common
neighbors value for u and v by the sum of weights on all the links incident to u and/or v :

JC(u,v) =
∑z∈Γ(u)∩z∈Γ(v)(wuz +wvz)

∑a∈Γ(u) wau +∑b∈Γ(v) wbv
. (12.2)

JC has been a well established measure in the information retrieval and data mining community
and quantifies the probability that a common neighbour of a pair of nodes would be selected if the
selection is performed randomly from the union of sets of neighbors Γ(u) and Γ(v) [193].

The weighted preferential attachment (PA) is according to [157] :

PA(u,v) = ∑
a∈Γ(u)

wau ∗ ∑
b∈Γ(v)

wbv. (12.3)

PA considers only the degrees of two nodes, while weighted PA also considers their weights. It has
been shown that PA governs the evolving of scale-free networks [204, 205].

The weighted Adamic-Adar (AA) adapted from [157], according to the original unweighted
definition in [199], is :

AA(u,v) = ∑
z∈Γ(u)∩z∈Γ(v)

wuz +wvz

log
(
1+∑a∈Γ(z) wza

) . (12.4)
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Measure Notation Equation
Weighted common neighbors CN CN(u,v) = ∑z∈Γ(u)∩z∈Γ(v)(wuz +wvz)

Weighted Jaccard coefficient JC JC(u,v) = ∑z∈Γ(u)∩z∈Γ(v)(wuz+wvz)

∑a∈Γ(u) wau+∑b∈Γ(v) wbv

Weighted preferential attachment PA PA(u,v) = ∑a∈Γ(u) wau ∗∑b∈Γ(v) wbv

Weighted Adamic-Adar AA AA(u,v) = ∑z∈Γ(u)∩z∈Γ(v)
wuz+wvz

log(1+∑a∈Γ(z) wza)
Weighted resource allocation index RA RA(u,v) = ∑z∈Γ(u)∩z∈Γ(v)

wuz+wvz
sz

Selectivity SE SE(u,v) = ∑z∈Γ(u)∩z∈Γ(v)
sz

deg(z)

Inverse selectivity IS IS(u,v) = ∑z∈Γ(u)∩z∈Γ(v)
deg(z)

sz

Table 12.1: Summary of link prediction measures. In particular, u,v,z,a,b are nodes, w are
weights on the links, su is the strength, deg(u) is the degree, and Γ(u) is the set of neighbors of the
node u.

AA ranks the common neighbors with a smaller degree more heavily, and punishes the common
neighbors with a higher degree.

The weighted resource allocation index (RA) where sz is the strength of node z is defined
in [156] as :

RA(u,v) = ∑
z∈Γ(u)∩z∈Γ(v)

wuz +wvz

sz
. (12.5)

RA punishes the common neighbors with higher strength more heavily and promotes the ones with
lower strength. It assumes the amount of resources that the node can share in its neighbourhood. RA
was initially defined as ∑z∈Γ(u)∩z∈Γ(v)

1
sz

[206]. Since Lü and Zhou [156] report that the unweighted
resource allocation index sometimes performs better then the weighted, we decided to use the
unweighted variant of RA. The unweighted RA is governed by the same underpinning idea as
selectivity and this will allow better insights into a comparative analysis of RA with two newly
proposed measures.

Selectivity (SE) is defined as

SE(u,v) = ∑
z∈Γ(u)∩z∈Γ(v)

sz

deg(z)
(12.6)

where deg(z) is the degree and sz is the strength of node z. Selectivity, originally proposed by
Masucci and Rogers [11], promotes the nodes with high strength and low degree, and depresses the
high degree nodes. The same governing principle is exploited in the Adamic-Adar and resource
allocation index. Since resource allocation has been very successful in link prediction we were
motivated to test inverse selectivity as the potential link prediction measure as well.

Inverse selectivity (IS) is defined as a degree of node z divided by it’s strength :

IS(u,v) = ∑
z∈Γ(u)∩z∈Γ(v)

deg(z)
sz

. (12.7)

Resource allocation index, selectivity and inverse selectivity are all computationally undemanding.
In order to summarize the seven link prediction measures we systematically list their notation and
the corresponding equations in Table 12.1.

12.3.1 Evaluation Metrics
In order to test the performance of weighted similarity measures we need to establish a testing set of
links EP which is used as a golden standard for evaluation. When we usually use a hold-out strategy
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for the construction of the test set it holds that the intersection of the training ET and testing EP sets
is empty ET ∩EP = /0 and that ET ∪EP = E. However, in our case we followed different principles
for the construction of the testing set. The data is divided into four longitudinally growing subsets,
meaning that each of the three training sets is a subset of the testing set.

The link prediction can be evaluated by many different scores as elaborated in [158]. In this
work we use: precision, F1 score and the area under the receiver operating characteristic curve
(AUC).

The link prediction precision P is the ratio between the number of correctly predicted links and
the total number of predicted links - the number of true positives (|T P|) divided by the number of
true positives and false positives (|T P|+ |FP|) [158] as:

P =
|T P|

|T P|+ |FP|
. (12.8)

The F1 score is a standard measure for evaluation in information retrieval tasks and is calculated as
the harmonic mean of precision P and recall R:

F1 = 2 · P ·R
P+R

=
2 · |T P|

2 · |T P|+ |FP|+ |FN|
(12.9)

where recall is calculated as a fraction of true positives (|T P|) over the number of true positives and
false negatives (|T P|+ |FN|).

The area under the receiver operating characteristic curve (AUC) represents the performance
trade-off between the true positive rate against the false positive rate [158, 207]. The receiver
operator characteristic curve connects the points corresponding to the pairs of true positive and
false positive rates obtained for different decision boundaries. The true positive rate is defined as
the fraction of actual positive cases over all positive cases as correct positives/total positives or
|T P|/(|T P|+ |FN|). The false positive rate is the fraction of actual negative cases that are misclassi-
fied as positives over all negative cases as incorrect negatives/total negatives or |FP|/(|T N|+ |FP|).
The AUC is calculated as the area under the receiver operating characteristic curve and has values
between 0 and 1. The AUC value of 0.5 is a random prediction and higher values are achieved for
better models. Hence, the value of 1 represents the score of the perfect model (classifier).

The comparison of different measures for link prediction on several datasets using three
evaluation metrics simultaneously amounts to the problem of comparing multiple classifiers over
multiple datasets. In order to provide a better insight into the obtained results, we introduce the
rank diagrams proposed by Demšar [208]. The rank diagrams position the best value on the left
(1st rank) and the worst on the right side, while others are ranked in between. The groups of
scores which are not significantly different are connected with the line below the x-axis. The scores
(average ranks) are significantly different, if their difference is above the threshold value obtained
using the Nemenyi post-hoc test: the threshold is referred to as critical distance CD, calculated as

CD = qα

√
K(K+1)

6N where qα is based on Studentized range statistic, K is the number of models
(classifiers), and N is the number of measurements (datasets). The critical distance value is depicted
on the ranking diagram using a line above the x-axis (labeled CD). All rank diagrams are generated
for the Nemenyi test with p-values below 0.05. Figure 12.1 shows an example of the rank diagram.
The source code and the explanation of the rank diagrams is available at the Orange Data Mining
webpage of the Bioinformatics Lab at the University of Ljubljana.

12.3.2 Datasets
For the link prediction task we exploited two Twitter datasets: the first consists of extracted tweets
using the Twitter API (referred to as emo-net) and the second consists of the Sentiment140 corpus
with carefully annotated tweets according to their polarity [148] (referred to as SC).
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Figure 12.1: This ranking diagram shows the average ranks for 4 models (methods, classi-
fiers): a, b, c and d. The best ranked (the best performing) model a is at the leftmost position,
while the worst performing model d is ranked at the rightmost position. Others are in the middle
according to the achieved rank (measured performance value). The line below shows that the
difference between models b, c and d is not statistically significant.

In the emo-net corpus, we extracted four sets of tweets in the English language according to the
following search criteria: a) tweets associated to immigrant and war related events (e.g. terrorist,
terrorism, ISIS, etc.); b) tweets containing negatively polarized words (e.g. anger, fear, hate, etc.); c)
tweets associated to pets (e.g. puppy, kitty, etc.) and d) tweets containing positively polarized words
(e.g. joy, happiness, happy, etc.). We will refer to the networks constructed from these sets of tweets
respectively as: a) emo-neta, b) emo-netb, c) emo-netc and d) emo-netd . The four search criteria
are selected in order to ensure consistency with the positively or negatively annotated polarity of
tweets in the SC dataset, and to keep the data used for the experimental set-up comparable.

The second corpus, SC, consists of four datasets extracted from the SC’s training data as
follows: a) the first 10,000 negatively polarized tweets, b) the first 10,000 positively polarized
tweets, c) the first 100,000 negatively polarized tweets and d) the first 100,000 positively polarized
tweets. We will refer to these datasets respectively as: a) SC104

neg, b) SC104

pos, c) SC105

neg and d) SC105

pos.
The SC dataset prepared in 2009 is available at http://help.sentiment140.com/for-students/.

Both corpora were subject to the same data-cleaning procedure of stopwords’ removal and
tokenization at the white spaces in tweets. Table 12.2 summarizes the content of the eight datasets
of the English tweets. It is worth noticing that the first six datasets are approximately of the same
size (counted in the number of tweets). Also, SC104

datasets are proper subsets of SC105
datasets

respectively.
For the data preparation we use Python in combination with the Python Twitter Tools package,

which provides an easy-to-use interface for the official Twitter API. The extraction during February
2016 resulted in approximately 10,000 tweets for each of the four different datasets, constructing a
corpus of 39,882 tweets in total.

The raw emo-net dataset is available at http://langnet.uniri.hr/resources.html.

12.3.3 Network Construction

The language networks construction principle arises from the very nature of the text [11, 209, 210].
The co-occurrence relation in language networks is established between linguistic units within a
sentence (here tweet), where the direction of a link reflects the words’ sequencing and weight on
the link reflects the frequency of word-pairs mutual appearance - weight is the number of tweets in
which two words co-occur. For the link prediction task we construct all the networks as undirected
and weighted.

First we construct the networks from all the words in the tweets. From emo-net datasets we
extract the top 200 most frequent words and extend the list with explicit keywords used for the
extraction of tweets (e.g. joy, puppy, anger,...). A link between two nodes is established if these two
words co-occur in the same tweet. For the SC datasets we retain the same principles of extracting
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Number of
Dataset tweets words diff.words hashtags diff.hashtags
emo-neta 9987 169045 26528 7967 1592
emo-netb 9958 151216 25013 1859 985
emo-netc 9946 137291 26953 2576 1522
emo-netd 9991 143516 31983 3987 2092
SC104

neg 10000 135751 27056 185 151
SC104

pos 10000 130531 30441 183 158
SC105

neg 100000 1349841 150611 1843 1087
SC105

pos 100000 1283953 175722 2394 1324

Table 12.2: Eight datasets of English tweets considered in this work. In the emo-net dataset
the tweets are extracted according to positive and negative search criteria (e.g. fear, hate, joy,
puppy, etc.), while in the SC dataset tweets are selected from already annotated positive and
negative polarity of the tweets [148]. The number of different words and the number of different
hashtags exclude repetitions, while the number of words and hashtags are the total values including
repetitions. We note that the SC104

datasets are proper subsets of the larger SC105
datasets.

the top 200 most frequent words and network construction. Next we construct hashtag networks.
From both datasets we extract the top 200 most frequent hashtags, and a link is established between
hashtags co-occurring in a tweet. Note that the number of different hashtags in SC104

neg and SC104

pos is
below 200 (see values listed in Table 12.2), so we use the available top-frequent set. The principle
of using the top 200 most frequent words (hastags) provides the best trade-off between computation
time and link prediction results. Still, in order to test whether using the larger top set contributes to
the change in the results we also probe the top 500 extracted hashtags in the SC105

pos dataset.
Finally, for each of the eight datasets for all-words and for hashtags respectively, we create

subnetworks by adding 25%, 50% and 75% of the links, while the entire network of 100% links
serves as the baseline for evaluation. The subnetworks preserve the temporal aspect of network
construction process, since links are added according to the time of creation captured in the tweet’s
timestamps. In other words, we construct networks from the sorted list of tweets (from the oldest to
the newest) .

To summarize, in total we construct 64 networks (32 based on all-words and 32 based on the
hashtags in the tweets), systematically using 25%, 50%, 75% and 100% of the links. Network
construction and analysis was implemented with the Python programming language using the
NetworkX software package developed for the creation, manipulation, and study of the structure,
dynamics, and functions of complex networks [8].

12.3.4 Link Prediction

The link prediction process is the same across all networks (25%, 50% and 75% of the links),
regardless of whether the networks are constructed for the co-occurrence of all-words or hashtags
in tweets . First, for each dataset we establish the test dataset EP as a full network with 100% of
the links. Then the link candidates are selected from all non-existing links in the current network
(25%, 50% and 75%) and ranked according to the assigned value of the link prediction measures.
Then we cut off the top n potential links, where n is the total number of new links in the respective
testing network, and construct a candidate set. The full set of valid (true positive) future links is
generated from the 100% network. Then, two sets (predicted and real links - true positive) are
used for the evaluation in terms of precision, the F1 score and the area under the receiver operating
characteristic curve (AUC).
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12.4 Results
In this Section, we show all the results needed to communicate the main message of our research,
while additional results are provided in the S1 Text, together with the definition of a standard set of
network measures used for exploring the structure of networks.

12.4.1 Link Prediction Results in All-word Networks
The link prediction results in networks constructed from all the words in tweets are presented in
Figure 12.2 for the emo-net dataset, while Figure 12.3 shows the results for the SC dataset. In both
figures the results are contrasted between precision, the F1 score and the area under the receiver
operating characteristic curve (AUC). It can be observed that the F1 score and precision follow the
same regularities i.e. exhibit decreasing values from the 25% to 75% networks regardless of the
dataset. In emo-nets the weighted preferential attachment (PA) is systematically under-performing
while the weighted Jaccard coefficient (JC) slightly deteriorates in the SC104

datasets. The achieved
results are in a favor of larger datasets. Also the difference between the F1 score and precision is
lower in the SC datasets, especially in SC105

and link prediction performance increases with the
size of the data used. AUC exposes no substantial variability over different datasets, improvement
is only noticed in larger in datasets (SC105

) regardless of the link prediction measure. From the
presented results it is difficult to judge about the performance of the tested link prediction measures,
therefore the analysis of ranking of seven link prediction measures follows.
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Figure 12.2: Link prediction in 25%, 50% and 75% of the links in networks constructed from
all the words in tweets of the emo-neta, emo-netb, emo-netc and emo-netd datasets. Shown
are the evaluation metric scores (see legend), namely the F1 score, the precision, and the area under
the receiver operating characteristic curve (AUC), as obtained for seven different link prediction
measures, namely common neighbors (CN), the Jaccard coefficient (JC), preferential attachment
(PA), Adamic-Adar (AA), the resource allocation index (RA), selectivity (SE) and inverse selectivity
(IS). The values of the F1 score and of precision are decreasing with the longitudinal growth of the
networks (from 25% to 75%), while the AUC does better at retaining values regardless of the used
percentage of links. The PA link prediction measure exposes the lowest link prediction potential on
the emo-net dataset, this is regardless of the evaluation metrics used. See Table 12.2 and the main
text for details.
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Figure 12.3: Link prediction in 25%, 50% and 75% of the links in networks constructed
from all the words in tweets of the SC104

neg, SC104

pos, SC105

neg and SC105

pos datasets. Shown are the
same quantities as in Figure 12.2. Here too the values of the F1 score and of precision are
decreasing with the longitudinal growth of the networks (from 25% to 75%), while the AUC does
better at retaining values regardless of the percentage of links used. It can also be observed that
larger networks yield better link prediction measures. See Table 12.2 and the main text for details.



12.4 Results 127

In Figure 12.4 we show rank diagrams for the F1 score (left) and the area under the receiver
operating characteristic curve (AUC) (right) for the 25% (top), 50% (middle) and 75% (bottom of
the figure) networks from all-words in tweets over all datasets.

Rankings between precision (see data in S1 Text) and the F1 score are preserved for the 25%
and 75% networks, while the rankings with AUC exhibit a different trend. Inverse selectivity (IS) is
at the highest rank according to the F1 score, while AUC ranks the resource allocation index at the
top position. Additionally, we consider the average overall rank across all networks (25%, 50% and
75%) of link prediction measures which positions at the top three places IS, AA, RA (according to
the F1 score evaluation ) and RA, SE and IS (according to the AUC evaluation).

Figure 12.4: Ranking diagrams based on networks constructed from all the words in tweets
for the seven link prediction measures used in this research. Namely for common neighbors
(CN), the Jaccard coefficient (JC), preferential attachment (PA), Adamic-Adar (AA), the resource
allocation index (RA), selectivity (SE) and inverse selectivity (IS). Rankings according to the F1
score are presented on the left for 25% (a), 50% (b) and 75% (c), while rankings according to the
area under the receiver operating characteristic curve (AUC) are presented on the right for 25% (d),
50% (e) and 75% (f). The best rank is at the leftmost position and the line below denotes measures
which are not significantly different (Nemenyi test with p-values of 0.05).
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12.4.2 Link Prediction Results in Hashtag Networks
Next we analyze the difference between the hashtags’ networks compared to the all-words net-
works. Regardless of the tested measures or corpora, the results are only changed slightly–mainly
deteriorated but in some cases also slightly improved .

Figures 12.5 and 12.6 compare the area under the receiver operating characteristic curve (AUC)
values of the all-words and hashtags networks. If we consider the F1 score as an evaluation metric
on smaller emo-net datasets, the results of all-words over the respective hashtag networks are
improved by 13-37% (for the 25% networks); 11-30% (50% networks) and 8-21% (75% networks).
On the SC dataset the results of the all-words’ networks are better by: 38-50% (25%); 43-53%
(50%) and 35-54% (75%). In terms of AUC the observed differences are in general smaller: for
emo-net up to 30% (25% networks); 19% (50%) and 22% (75%) and for the SC datasets up to 20%
(25%); 15% (50%) and 25% (75%).
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Figure 12.5: Link prediction in 25%, 50% and 75% of links in networks constructed from all
the words and from hashtags (see legend) in tweets of the emo-neta, emo-netb, emo-netc and
emo-netd datasets. Shown is the area under the receiver operating characteristic curve (AUC), as
obtained for seven different link prediction measures, namely common neighbors (CN), the Jaccard
coefficient (JC), preferential attachment (PA), Adamic-Adar (AA), the resource allocation index
(RA), selectivity (SE) and inverse selectivity (IS). See Table 12.2 and the main text for details.
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Figure 12.6: Link prediction in 25%, 50% and 75% of the links in networks constructed from
all the words and from hashtags (see legend) in tweets of the SC104

neg, SC104

pos, SC105

neg and SC105

pos
datasets. Shown are the same quantities as in Figure 12.5. See Table 12.2 and the main text for
details.
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Finally, the ranks are presented in Figure 12.7 for the hashtags’ networks of the 25%, 50% and
75% of the links for the F1 score (left) and AUC (right) respectively. The rank analysis reveals that
the F1 score and AUC are interchanging Adamic-Adar, selectivity and inverse selectivity at the
highest positions. The top overall average ranks achieved for the F1 score and AUC on the hashtags
are: IS, AA, PA and IS, SE, PA respectively.

Figure 12.7: Ranking diagrams based on networks constructed from the hashtags in tweets
for the seven link prediction measures used in this research. Namely for common neighbors
(CN), the Jaccard coefficient (JC), preferential attachment (PA), Adamic-Adar (AA), the resource
allocation index (RA), selectivity (SE) and inverse selectivity (IS). Rankings according to the F1
score are presented on the left for 25% (a), 50% (b) and 75% (c), while rankings according to the
area under the receiver operating characteristic curve (AUC) are presented on the right for 25% (d),
50% (e) and 75% (f). The best rank is at the leftmost position and the line below denotes measures
which are not significantly different (Nemenyi test with p-values of 0.05).

Alternative rankings according to different evaluation scores indicate the need for considering
different evaluation metrics simultaneously, while using only one metric provides myopic insights
into the results. This is strong evidence that multiple evaluation metrics should be considered for the
evaluation of link prediction of the future content of tweets. The reported results also suggest that
F1 score is a better candidate than precision, so for future research in link prediction in language
networks we suggest considering the F1 score and AUC in parallel.

Finally, we test whether the network construction principles of cutting off the top 200 most
frequent words (hashtags) influences the obtained results. The construction of the top 500 hashtags’
networks follows the same principles except that the cut-off threshold is set to 500 instead of 200.
The SC105

pos dataset was selected due to the sufficient number of different hashtags and the size of 105.
The results in Figure 12.8 depict the differences between the obtained top 200 and top 500 results in
terms of the F1 and AUC scores for the 25%, 50% and 75% hashtags’ networks respectively. There
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are insignificant differences in the obtained results between the top 200 and the top 500 networks,
except for the AUC from the 75% networks. AUC notably deteriorates in SC104

500 networks, due
to the number of different hashtags below 160.

Figure 12.8: Link prediction in 25%, 50% and 75% of the links in networks constructed from
the top 200 and top 500 hashtags (see legend) in tweets of the SC105

neg dataset. The upper row
shows the F1 score, while the bottom row shows the area under the receiver operating characteristic
curve (AUC), as obtained for the seven different link prediction measures considered in this
research.

12.5 Discussion
The trend of decreasing precisions and F1 score values along the 25% to 75% links in networks is
present for all-words’ and hashtags’ networks. In networks created from 25% of the data, many
probable links are left out. At the same time the most probable links are the most likely to be
predicted and the link prediction measures are the most successful in predicting highly-probable
links. With more data in the 50% and 75% networks the majority of highly-probable links are
already included in the network, therefore the prediction measure is expected to predict less-
probable links, which causes the drop in the prediction precision and the F1 score. At the same time
AUC is prone to this effect. Zhao et al. in [197] observe similar problems in the dataset for testing,
which they overcome by computing the odds ratio for correcting the prediction results. Following
the same principle we plan to introduce the odds ratio into the evaluation of link prediction in
language networks.

Regarding the size of the used datasets (105 vs 104 in SC) we can conclude that more data raise
the improvement in the obtained results (as expected) - F1 scores are improved but the values of
the area under the receiver operating characteristic curve (AUC) are of the same range and not
notably higher. Hence, we can consider the results for the 104 size as representative, especially
when we regard the network construction principles being the same and resulting from networks of
approximately the same size of nodes.

The F1 score and precision values shown in Figures 12.2 and 12.3 exhibit regularities across
tested link prediction measures and datasets. The F1 score, calculated as the harmonic mean of
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precision and recall, is a more suitable evaluation metric than precision. Hence, we confirm the
findings for social follower networks in [191], and for reciprocal follower networks on Twitter
in [194] also for language networks constructed from the content of tweets – words and hashtags.

The two newly proposed measures for link prediction selectivity (SE) and inverse selectivity (IS)
proved correct, especially IS which is ranked the best in 8 out of 18 cases, AA is the best 5 times,
while SE and RA are at the top ranked position twice. In contrary JC occurred 17 times at the lowest
rank. This is in accordance with other reported results where the measures which punish the nodes
with a higher degree (AA, RA, SE and IS) are overperforming common neighbors, the Jaccard
coefficient and preferential attachment in biological, social or technical networks [190, 196, 197].
Due to the achieved scores and low computational cost, we can conclude that selectivity and inverse
selectivity should be considered for weighted link prediction, especially when dealing with texts in
language networks.

Due to the same construction principles we analyse networks of a similar size, which is reflected
on the very comparable results in hashtags to all-words’ networks. The network density is high and
as expected systematically increasing from the 25% to 100% all-words’ networks, while hashtags’
networks exhibit some variations, especially in the SC dataset. Murata and Moriyasi in [196]
discuss the positive influence of the network density on the performance of the weighted similarity
measures, which is also reflected in our results. Next, all the studied networks are characterized by
a relatively high average clustering coefficient, a very high average degree and average strength
underpinning the efficiency of weighted similarity measures in both words’ and hashtags’ networks.

The area under the receiver operating characteristic curve (AUC) value of 0.5 is a random
prediction – there is no relationship between the predicted values and the truth. An AUC below
0.5 indicates there is a relationship between the predicted values and the truth, but the model is
backwards, i.e., predicts smaller values for positive cases. Another way to think of AUC is to
imagine sorting the data by predicted values. Suppose this sort is not perfect, i.e., some positive
cases sort below some negative cases, then AUC effectively measures how many times you would
have to swap cases with their neighbors to repair the sort. Thus, sometimes we obtain a value below
0.5 for the weighted preferential attachment measure. All the networks have an assortativity between
-0.02 and -0.52 which characterize the networks from the content of tweets as non-assortative. This
is related to preferential attachment indicating that this is not the underlying mechanism for the
growth of language networks. Finally, this is reflected in the score of preferential attachment with
some AUC values below 0.5.

Link prediction is known to be an unbalanced classification problem and the receiver operating
characteristic curves are insensitive to changes in class distributions and therefore insensitive to
skewed class distributions [207]. Hence, it is no surprise that AUC metric provides more consistent
insights into a measured performance over different datasets. Still, it would be wrong to neglect the
F1 score for the evaluation since it provides a different perspective of the results. This is especially
important, since we are dealing with text and hashtags. The content of microblogs represented
in the form of words and hashtags is important for information representation and information
propagation which are of interest in the information retrieval discipline as well. Information retrieval
is traditionally oriented towards the F1 score based evaluations. Hence based on our findings we
advocate the use of the F1 score and AUC simultaneously. To conclude, we find the introduced rank
diagrams as a very useful tool which helps in merging the results of two or more evaluation metrics,
and undoubtedly helps in gaining a holistic overview of the link prediction measures’ performance
over different datasets.

In general hashtag networks exhibit similar characteristics as all-word networks: there is less
difference of the AUC values than in terms of the F1 scores; hashtags constantly have lower F1
scores than all-words’ counterparts, while AUCs are of the same range. F1 scores are decreasing
from the 25% to 75% networks, while AUC expose constant values; and there are no significant
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deviations in results on larger datasets. The only salient behaviour is noticed between the number
of hashtags in the emo-net and SC datasets: it seems that the more recent tweeting trends rise more
systematic (frequent) use of hashtags, which is reflected onto the structural properties of the studied
networks. The influence of the distribution of hashtags per tweet is elaborated in [186] where they
report about 50% of tweets tagged with one hashtag (dataset collected in 2013), while authors
in [153] report around 15% of tweets with one hashtag (dataset collected before 2011). Next,
the expansion of the network structure to the top 500 hashtags (Fig 12.8) exhibited no significant
improvements. The importance of hashtags is reflected in capturing the semantic context of tweets,
and as such are important for the summarization and categorization of the tweets’s content. This
study is an initially step toward revealing the deeper structural properties of hashtags and will be
addressed in our future studies.

12.6 Conclusions
In this work we analysed link prediction based on the local similarity measures on networks
constructed from the content of tweets: all-words and hashtags. The main goal of this analysis
is to find which measure performs better in the task of predicting the future linking of words and
hashtags in the content of tweets, which can be utilized for the propagation of information and
opinion in social networks.

Besides five already analysed measures for link prediction in weighted complex networks of
common neighbors (CN), the Jaccard coefficient (JC), preferential attachment (PA), Adamic-Adar
(AA) and the resource allocation index (RA), we proposed two new measures: selectivity (SE)
and inverse selectivity (IS). The experimental results obtained from two corpora of English tweets
through the construction of systematically growing subnetworks form the 25%, 50% and 75% of
the links and evaluated on the full content of 100% of the links in the network revealed many new
findings.

First, the introduced ranking diagrams proved beneficial, as a powerful and straightforward
tool for comparing the achieved scores of multiple tested link prediction measures on multiple
datasets. The alternative rankings achieved by different evaluation scores (the F1 score and the area
under the receiver operating characteristic curve) indicate the need to consider multiple evaluation
metrics simultaneously, in order to obtain an unimpeded perspective on the link prediction on
Twitter. Second, the two newly proposed measures selectivity (SE) and inverse selectivity (IS)
proved efficient, especially IS, which is ranked best in 8 out of 18 cases, AA is the best 5 times,
while SE and RA are at the top ranked position twice. In contrast, JC occurred 17 times at the
lowest rank. Inverse selectivity is the first choice of measures for the task of predicting the future
content of tweets. Third, the hashtags results exhibit similar characteristics as all-words networks,
and as such are suitable candidates for the further examination of the content on Twitter within a
complex network framework. Besides that, hashtags are able to capture the semantic context of
tweets, and as such are important for the summarization and categorization of tweets.

The presented research reveals many possible direction for future studies. The focus of our
future research plans is a deeper investigation of hashtag networks, incorporating the prediction of
weights on the links and introducing the odds ratio to evaluate weighted link prediction in language
networks.



13. Extracting Domain Knowledge by Complex
Networks Analysis of Wikipedia Entries

13.1 Abstract

In this Chapter we describe a complex networks analysis of Wikipedia. We construct 10 different
networks from Wikipedia entries (articles) related to the chosen domain. The goal of the experiment
is to extract domain knowledge in terms of identifying entries that are centrally positioned and
entries that are strongly related. We apply complex networks analysis on all acquired networks
and examine the networks’ structure. We employ centrality measures in order to find centrally
positioned entries in the network. Furthermore we identify communities and find which entries are
densely connected according to the network structure.

13.2 Introduction

Complex networks exhibit specific topological features, such as high clustering coefficients, small
diameters, a power-law degree distribution, community structure, one or several giant components,
hierarchical structures, etc. Two important classes of complex networks that can be further
differentiated are small-world networks [43] with small distances and high clustering coefficients
as main properties and scale-free networks [43] which can be characterized by a power-law degree
distribution.

Wikipedia can be modelled as a complex network in a way that Wikipedia entries are nodes,
and links between two nodes are established if there is a hyperlink between these two entries.
Early attempts to quantify Wikipedia using complex networks analysis were focused only on
network structure of linked Wikipedia entries. In [216] Zlatić et al. present an analysis of
Wikipedias in several languages as complex networks. They show that many network characteristics
(degree distributions, growth, topology, reciprocity, clustering, assortativity, path lengths and triad
significance profiles) are common to Wikipedias in different languages and show the existence
of a unique growth process. The same authors studied Wikipedia growth based on information
exchange in [217]. In [212] an analysis of the statistical properties and growth of Wikipedia is
presented. Pemble and Bingol [27] have constructed two complex networks out of English and
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German Wikipedia corpora and analyzed conceptual networks in different languages.
The other research direction is focused on content found on Wikipedia and analyses Wikipedia

as a (domain) knowledge network. In Fang [213] they first extract a specific domain knowledge
network from Wikipedia (specifically, four domain networks on mathematics, physics, biology, and
chemistry) and then carry out statistical analysis on these four knowledge networks. Also, they
show that MathWorld and Wikipedia Math share a similar internal structure. In [214] Masucci et
al. extract the topology of the semantic space and measure the semantic flow between different
Wikipedia entries. They further analyze a directed complex network of semantic flow. In [3] the
results of semantic language networks analysis are presented in general. Motivated by the second
approach that studies Wikipedia as a knowledge network , we wanted to study how the network
structure is related to domain knowledge. The goal of our experiment was to extract centrally
positioned entries in the network and analyze how these entries are related to domain knowledge
and are some more important than other. In the second part of the experiment the task was to extract
entries that belong to the same community and check whether they are semantically related.

In our previous research, we have already analyzed Wikipedia as a complex network [31], but
by constructing a network of syllables. Also, we examined the structure of Croatian language
networks in [21, 50, 72]. In [59, 72] we applied network measures for a keyword extraction task.
In all our previous experiments we were focused solely on language structure and this is our first
attempt to analyze semantic relations in a network.

In the Section 13.3 we present key measures of complex networks involved in network structure
analysis. In the Section 13.4 we describe data sources and network construction principles. In the
Section 13.5 we present the results. Finally, the Section 13.6 contains a conclusion and possible
directions for future research.

13.3 Network Structure Analysis
In this Section we review some of the most important network measures [67]. Every network has
an N number of nodes and a K number of links. The degree of a node i is the number of links with
which the node is connected, ki. Considering the fact that we are working with directed networks,
we must specify two types of degrees: the in-degree, kin

i , corresponding to the number of incoming
links and the out-degree, kout

i , equal to the number of outgoing links for any particular node i. The
average degree of the network is:

< k >=
2K
N

. (13.1)

For the directed networks we omit multiplication by 2. In the further equations we assume
that the network is directed and that the total possible number of links is equal to N(N−1). For
every two connected nodes i and j, the number of connections lying on the path between them
is represented as di j, and so di is the average distance of a node i from all other nodes, and it is
obtained by:

di =
∑ j di j

N
. (13.2)

For the next two measures, if a network contains more than one component, we consider the
largest component . The average shortest path length between every two nodes in a network is:

L =
1

N(N−1) ∑
i6= j

di j. (13.3)

And the maximum distance results in the network diameter, D:

D = maxidi. (13.4)
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The clustering coefficient is a measure which defines the presence of connections between the
nearest neighbours of a node. And so, ci (the clustering coefficient) of a node is a fraction between
the number of edges Ei that exist between node i and the total possible number of edges within the
neighbourhood of the node i:

ci =
2Ei

ki(ki−1)
. (13.5)

The average clustering coefficient of a network is defined as the average value of the clustering
coefficients of all nodes in a network :

C =
1
N ∑

i
ci. (13.6)

Density of a network is a measure of network cohesion defined as the number of observed links
divided by the number of total possible links:

d =
K

N(N−1)
. (13.7)

Degree centrality of a node i is the degree of that node. It can be normalised by dividing it by
the maximum possible degree N−1:

dci =
ki

N−1
. (13.8)

Betweenness centrality quantifies the number of times a node acts as a bridge along the shortest
path between two other nodes. Let σ jk be the number of shortest paths from node j to node k and
let σ jk(i) be the number of those paths that pass through the node i. The normalised betweenness
centrality of a node i is given by:

bci =
∑i 6= j,i6=k

σ jk(i)
σ jk

(N−1)(N−2)
. (13.9)

Closeness centrality is defined as the inverse of farness, i.e. the sum of the shortest distances
between a node and all other nodes. Let di j be the shortest path between nodes i and j. The
normalised closeness centrality of a node i is given by:

cci =
N−1

∑i 6= j di j
. (13.10)

Modularity measures the quality of the network partition in the communities. The modularity
of a network partition is a scalar value between −1 and 1 that measures the density of links
inside communities as compared to links between communities. Let ei j be the fraction of edges
in the network that connect vertices in group i to those in group j, and let ai j = ∑ j ei j . Then the
modularity can be calculated using following equation :

Q =
k

∑
i=1

(eii−a2
i ). (13.11)

The degree assortativity coefficient measures the tendency of nodes in a network to connect
to nodes similar to themselves. The coefficient lies between −1 and 1 and it is quantified via the
Pearson correlation. Positive r values indicate a correlation between similar-degree nodes. Let
qk and q j be the distribution of the degree of out-edges that do not connect to the other node in
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question, e jk the joint probability distribution of qk and q j, and σ2
q the variance of the distribution.

Then we can calculate the assortativity coefficient using the following equation :

r =
∑ jk jk(e jk−q jqk)

σ2
q

. (13.12)

On the meso-scale level complex networks analysis includes a community detection task [167].
Communities, in this sense, are groupings of densely interconnected nodes within a network. In
other words, nodes in a community have a greater amount of connections amongst each other than
with other nodes in the network . Several algorithms are used for community detection such as
hierarchical clustering, Girvan-Newman’s algorithm, minimum-cut method, etc . One of the most
efficient is the Louvain method [211], a greedy optimization method that optimizes the modularity
of a network’s partitions. The number of communities (Nc) represents the amount of such groupings
found within a network.

13.4 Network Construction
For the purpose of our experiment we collect entries from Wikipedia and construct networks related
to the domain. Our intention was to construct two types of networks: level 2 networks and level
4 networks. We construct level 2 networks by starting with a chosen seed entry (e.g. "Complex
network" or "Data"), storing all the hyperlinks to related entries from the seed entry’s text (level
1) and proceeding to extract the hyperlinks from all the entry pages taken from the original entry
(level 2). Analogously, we construct level 4 networks by taking the first 10 hyperlinks from a given
entry page and proceeding to repeat the task three times, arriving at level 4. We limit the hyperlinks
to the first 10 due to the computational complexity at the same time having in mind that the most
general hyperlinks are usually at the beginning of the entry’s text.

Therefore, the first task is the construction of a web scraping program which would extract
hyperlinks from a Wikipedia entry’s text. The hyperlinks are extracted using a Python package
for HTML parsing called Beautiful Soup which parses the HTML structure of a given HTML
document into a parse tree. By navigating the tree we locate the tag ID which corresponds to article
content ("mw-content-text") and proceed to extract the hyperlinks which themselves are found
within paragraph (<p>) tags and finally inside link (<a>) tags in that section of the page. Finally,
each network is stored in an edge list in the following format: "entry title" \t "linked entry title".
We had some difficulties with processing non-ASCII script and hyperlinks that were not connected
to other documents (citations, in-page references, etc.), but we managed to avoid those by checking
the data during the extraction process.

In our directed network , each entry’s title represents a node and it is connected to other entries
hyperlinked in its text, again represented as network nodes. We construct a total of 10 domain
networks for five chosen seed entries: "Byte", "Complex network", "Computer science", "Data" and
"Programming language". The naming scheme includes the level of a specific network in its name
(e.g. the level 2 network for "Byte" is BT2). Since we consider unweighted networks, we dismiss
double links. This, along with the fact that some entries do not contain 10 hyperlinks resulted
in our level 4 networks having less than 104 expected edges. We use Python and the NetworkX
software package developed for the creation, manipulation, and study of the structure, dynamics,
and functions of complex networks [8].

The various visualizations of the networks are done using Gephi [29], an open-source network
analysis and visualization package written in Java. The following visualization (Figure 13.1)
represents a level 2 network constructed around the "complex network" Wikipedia entry. We loaded
the edge list into Python, ran the Yifan-Hu layout algorithm, correlated the label size with the
corresponding node’s betweenness centrality measure and coloured clusters according to their
respective modularity class.



13.5 Results 139

Figure 13.1: CN2 network visualization.

13.5 Results

In this Section we present the results of our measuring described in Section 13.3, such as average
degree < k >, average path distance L, diameter D, average clustering coefficient C, density d,
modularity Q, number of communities (Nc) and degree assortativity coefficient r. We also present
the most central nodes (according to the three centrality measures) and communities in networks
detected by using the Luvain algorithm.

In Table 13.1 we present estimated global network measures. There are certain differences
between measures for level 2 and 4 which are evident upon closer inspection. For instance, level 4
networks have significantly larger average path lengths, diameters, assortativity coefficients, often
a significantly larger number of detected communities and slightly larger average degrees. The
modularity measure and density are comparable between the two, whilst level 2 networks show
larger clustering coefficients.

For comparison with random networks , the table also includes two measures for equivalent
random networks (Erdös-Rényi random graphs) - the average shortest path length (LER = lnN/ln <
k >) and the average clustering coefficient (CER =< k > /N). The results show that the complex
networks we have constructed have a significantly higher average clustering coefficient than their
Erdös-Renyi random graph counterparts . This, in addition with a relatively small average shortest
path length L led us to conclude that we are dealing with small-world networks as described by
Watts and Strogatz [216]. For the purposes of this comparison we treat the networks as undirected .

Moreover, a distinctly high modularity coefficient Q (higher than 0.7 in all but one network, as
visible in Table 13.1) shows a clear tendency towards community clustering of nodes present in the
networks. We did not observe any strict rule governing community size across networks, although
level 2 networks have an understandably smaller Nc which we contributed to the very construction
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Measure "Byte"
"Complex
network" "Data"

BT2 BT4 CN2 CN4 CS2 CS4
Number of nodes (N) 3945 3632 3405 3070 12881 3630
Number of edges (K) 5112 5611 4132 5008 18852 5851
Average degree (< k >) 1.296 1.545 1.214 1.631 1.464 1.612
Avg. shortest path (L) 3.693 6.834 3.198 9.218 3.417 6.277
Avg. shortest path (LER) 8.6938 7.26622 9.168 6.791 8.8088 7.0023
Diameter (D) 9 15 6 22 7 14
Average clustering

coefficient (C) 0.06 0.021 0.043 0.024 0.074 0.019
Average clustering
coefficient (CER) 0.00066 0.00085 0.00071 0.00106 0.00023 0.00089

Density (d) 0.0003 0.00042 0.00035 0.00053 0.00011 0.00044
Modularity (Q) 0.778 0.776 0.794 0.763 0.725 0.771

Number of
communities (Nc) 17 32 17 21 23 27
Degree assortativity

coefficient (r) -0.592 -0.048 -0.521 0.021 -0.491 -0.028

Measure "Computer science"
"Programming

language"
DT2 DT4 PL2 PL4

Number of nodes (N) 2297 3658 7467 3965
Number of edges (K) 2630 5531 13933 6215
Average degree (< k >) 1.145 1.512 1.145 1.612
Avg. shortest path (L) 3.086 6.369 3.127 6.277
Avg. shortest path 9.341 7.4144 10.764 7.078
Diameter (D) 7 14 6 22
Average clustering

coefficient (C) 0.043 0.019 0.082 0.021
Average clustering
coefficient (CER) 0.0010 0.00083 0.00031 0.00081

Density (d) 0.00049 0.00041 0.00025 0.0004
Modularity (Q) 0.828 0.779 0.594 0.78

Number of
communities (Nc) 18 31 19 30
Degree assortativity

coefficient (r) -0.561 -0.048 -0.468 -0.059

Table 13.1: Global measures for level 2 and level 4 networks of "Byte", "Complex networks",
"Data", "Computer science" and "Programming language" Wikipedia’s entries.
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principle as described in Section 13.4.
After the analysis on the global level, we analyse the networks on the local level in terms

of centrality measures. Tables 13.2 and 13.3 show lists of top ten entries according to the three
centrality measures for the two seed entries: "Computer science" and "Programming language".
We analyse the degree centrality, betweenness centrality and closeness centrality. For the degree
centrality we treated the network as undirected. For each centrality measure and domain there
are two lists of entries, one for level 2 networks and another for level 4 networks. We noticed
that the lists for level 2 networks consist of entries that are semantically related to the seed entries
("Computer science" or "Programming language") in a way that might be ascribed as belonging
to a hierarchy. This is especially evident for the closeness centrality measure. For example, the
list of top ten entries according to the closeness centrality for the seed entry "Computer science"
contains other scientific domains (theoretical computer science, mathematics, artificial intelligence,
physics, engineering) and for the seed entry "Programming language", list contains some prominent
programming languages (C, Java, Perl, Python, C++).

Degree centrality Betweenness centrality
CS2 CS4 CS2 CS4
human mathematics computer science computer science
university of Cambridge cell (biology) computer information
philosophy computer science mathematics protein
industrial revolution computer artificial intelligence science
G. W. Leibniz information philosophy algorithm
physics protein human logic
eletrical engineering organism Gottfried Wilhelm Leibniz organism
artificial intelligence dna algorithm cell (biology)
mathematics computer program theoretical comp. science computing
Alan Turing philosophy physics mathematics
Closeness centrality
CS2 CS4
computer science computer science
mathematics information
theoretical comp. science science
artificial intellgience mathematics
philosopy ancient greek
physics latin
human computing
G. W. Leibniz algorithm
engineering bit

Table 13.2: Top ten entries in the "Computer science" networks (CS2, CS4) regarding the three
centrality measures: degree centrality, betweenness centrality and closeness centrality.

In the second part of the experiment we analyse communities in all 10 networks in order to
explore which entries are grouped together. Figure 13.2 shows most significant entries from the
CS2 network grouped into communities. Different communities are presented in different colours.
For example, entries related to the mathematics domain (mathematics, number, set, function, real
number, etc.) are in the red-coloured community; entries related to the computer science domain
(computing, algorithm, compiler, etc.) are in the orange-coloured community; entries that are related
to the biology domain (cell, organism, gene, etc.) are in the light-orange coloured community
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Degree centrality Betweenness centrality
PL2 PL4 PL2 PL4
history of computing-

hardware mathematics prog. language prog. language
internet computer computer computer
english language computer science C (prog. language) software engineering
computer physics compiler computing
C (prog. language) set (mathematics) english language computer science
python (prog. language) greek language computer program algorithm
University of Manchester logic internet message
perl language perl communication
prog. language central processing unit python (prog. language) machine
php electronics java (prog. language) function (mathematics)
Closeness centrality
PL2 PL4
prog. language prog. language
C (prog. language) ancient greek
computer prog. computer
java (prog. language) mathematics
perl arithmetic
compiler science
omputer program greek language
python (prog. language) physics
control flow latin
C++ computer science

Table 13.3: Top ten entries for the "Programming Language" networks (PL2, PL4) regarding the
three centrality measures: degree centrality, betweenness centrality and closeness centrality.

Figure 13.2: CN2 communities.

and entries that are related to the philosophy domain (reality, concept, knowledge, etc.) are in the
white-coloured community. It can be observed that entries grouped into communities are more
closely semantically related than entries from different communities. The results are similar for
other networks; semantically related entries are grouped into communities much more than entries
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that are not semantically related.

13.6 Conclusion
In this Chapter we present our initial attempt to study Wikipedia as a complex network. We extract
parts of Wikipedia related to 5 chosen seed entries. We construct 10 different networks using two
different principles of construction. Then we analyse the global structure of all networks. We show
that all networks have similar properties: a high average clustering coefficient in comparison to
the random networks, small distances, low density and community structure. From these global
measures we may conclude that all 10 networks extracted form Wikipedia are small-world networks.
These results are in line with previous studies of Wikipedia as a complex network.

Furthermore, we explore semantic relations in the constructed networks. We use network
centrality measures to extract entries in the networks that are significant according to the network
structure. Three centrality measures are employed for this task: degree centrality, betweenness
centrality and closeness centrality. It can be observed that for level 2 networks centrality measures
obtain good results (especially closeness centrality). Among top ten entries according to the
closeness centrality are entries that are semantically related to the domain. This can be useful for
modelling taxonomy or domain ontology. Furthermore, semantically related entries are grouped
into communities more often that entries that are not semantically related.

These findings can be partially explained as a consequence of network construction rules
employed in this experiment. However, these preliminary results suggest that Wikipedia is well
organised and its structure can be captured and explored by a complex networks approach. In future
work we plan to extract a broader section of Wikipedia and explore its potential as a knowledge
network. We will study the domain knowledge extraction possibilities and perform the evaluation
of the results.





14. Comparing Network Centrality Measures
as Tools for Identifying Key Concepts in
Complex Networks: a Case of Wikipedia

14.1 Abstract

Network centralities are amongst the most important measures for tracking and locating crucial
nodes in a network. In this Chapter, we propose a general approach for identifying the most suitable
centrality measure for detecting key concepts in a semantic or linguistic network. We experiment
with seven network centrality measures (degree centrality, betweenness centrality, closeness cen-
trality, eigenvector centrality, current-flow betweenness centrality, current-flow closeness centrality
and communicability centrality). For the purpose of evaluation, we compare the original Wikipedia
hyperlink network with a constructed concept network. The obtained results indicate that all seven
used measures have good potential for identifying key terms, and that degree centrality achieves the
best score. A good score is also obtained for current-flow betweenness centrality and current-flow
closeness centrality.

14.2 Introduction

The essential component of network science is a mathematical concept which we call a graph or
a network. A graph, generally speaking, is represented as objects connected according to their
relations. These objects are usually called vertices (nodes), and they are interconnected with
edges (links). When we think of networks, we usually focus on representing some real-world
relationships. Many objects of interest in the physical, biological, and social sciences can be
represented as networks. Real-world networks are often complex networks which differ from
regular or random networks in the fact that they exhibit some specific features like a community
or hierarchical structure, giant components, a power law degree distribution, short average path
lengths and high clustering coefficients [67]. Upon the construction of a network, we can analyze it
utilizing various methods and metrics in order to extrapolate information pertinent to the network
which are not immediately observable through its mere visualization. For instance, we may analyze
a computer network in order to deduce how tolerant it is to attacks and will the vulnerability of
certain nodes result in the loss of data flow. Another example is analyzing social networks to reason
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about influencers [218] or to model knowledge flow through the network [219]. A prominent aspect
of complex network analysis is the identification of important nodes in a network [220] which
gives special interest to network centrality measures as indicators of which nodes have the crucial
position in a network. Centrality measures may refer to the dominance of single nodes and are
important in the construction of maximally efficient communication networks [221].

Furthermore, centrality measures indicate which nodes occupy important positions in the
network . These measures were initially exploited in the domain of social sciences. The sociologist
Freeman introduced betweenness-based centrality measures in [221]. Later on, Bonachich proposed
the Eigenvector centrality measure [222]. These measures were later imported into other domains
of complex networks like biological [223, 226] and infrastructure networks [227, 228]. Since then,
many other centrality measures were proposed, specified for different tasks and ways of ranking
nodes [224, 225, 229, 230].

In the domain of semantic and language networks, centrality measures have mainly been used
for identification of keywords or key phrases [80, 87, 96, 99, 106, 231] and text summarization
[85, 98, 104] .

The results of previous analyses of language networks motivated us to analyze centrality
measures in the context of Wikipedia. We have already analyzed and compared the potential of
different centrality measures for keyword extraction from texts [72, 201]. In [202] we proposed a
new method for keyword extraction based on the selectivity measure. Wikipedia is interesting to
study from different aspects . In [31], we analyzed networks of syllables constructed from texts
found on Wikipedia. Furthermore, we experimented with the extraction of domain knowledge
from Wikipedia [232]. In this work we describe a new approach for identifying key concepts
in Wikipedia texts (entries) by means of seven network centrality measures: degree centrality,
betweenness centrality, closeness centrality, eigenvector centrality, current-flow betweenness cen-
trality, current-flow closeness centrality and communicability centrality and rank them according
to their performance in the evaluation procedure. Although centrality measures have been widely
used for keyword extraction, to the best of our knowledge, current-flow betweenness centrality
and current-flow closeness centrality were used for key concept identification for the first time.
Moreover, the novelty of the proposed approach lies in the fact that it utilizes key concepts for
construction of a concept network. More precisely, the presented algorithm identifies semantically
related articles based on the keywords they share .

In the presented experiment, we treat foremost centrally positioned nodes as key concepts
in a complex network constructed around Wikipedia’s linked structure . The main goal of the
presented experiment is to identify and explore which of the seven measures is suitable for the
task of identifying central concepts in a semantic or linguistic network. Centrality measures are
used in order to look at how centralities fare amongst themselves when considering the quality of
Wikipedia’s link structure contrasted with the semantic content found in the texts themselves. For
the purpose of the analysis, comparison and evaluation of the set of centrality measures, we propose
an approach based on the assumption that Wikipedia entries with a certain number of shared central
concepts should be linked . Therefore, we construct a concept network in which Wikipedia entries
are nodes, and a link between two entries is established if these two entries have a certain number
of central concepts in common.

Next, we perform the evaluation procedure in which we measure the amount of overlap between
the constructed concept network and a real network of hyperlinked Wikipedia entries. The overlap
is measured in terms of the Jaccard index.

The remainder of the Chapter 14 is organized as follows. In the Section 14.3, we present related
work about Wikipedia as a complex network and we give a short overview of the importance of
centrality measures. In the Section 14.4, we give a definition of complex networks and provide
equations and descriptions of all network centrality measures used in the presented experiment.
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Moreover, we describe steps of the proposed approach for a three-layer network construction and
evaluation of centrality measures. In the Section 14.5, we describe an experiment based on the
proposed approach and in the fifth, we present the results of the conducted experiment. Finally, the
Section 14.6 contains a conclusion and possible directions for future research.

14.3 Background and Related Work

14.3.1 Wikipedia as a Complex Network

Wikipedia is a free, online, collaborative, general knowledge encyclopedia . It was launched in 2001
and is currently available in 295 different languages. It is among the 10 most popular websites in
the world, and its English language variant includes over 5.3 million unique entries (articles) [233].
Wikipedia is one of the largest open access compendiums of human knowledge and is updated
daily by a workforce of over 134,711 regular volunteer editors [234]. As far as the validity and
quality of Wikipedia entries are concerned, a 2005 study published in Nature showed that Wikipedia
averaged 3.86 errors per entry. Contrasted with the 2.92 errors per entry average of the de facto
standard, which is the Encyclopedia Britannica, Wikipedia proved its status as a valuable knowledge
resource [233].

Wikipedia, as most encyclopedias, revolves around individual entries. As is typical for WWW
documents, it is a hypertext wherein normal text is interspersed with hyperlinks pointing towards
other related Wikipedia entries. Since an encyclopedia of this type strives to have its entries mutually
well connected in order to facilitate the traversal of relevant topics, the number of hyperlinks is
usually rather high. This connectedness of Wikipedia entries is the most basic principle following
which complex networks are constructed from entries and their hyperlink structure . The model
to construct a network relies on taking a starting entry as a seed node and then building edges
according to the appearance of hyperlinks, each new hyperlinked entry being a new node within
the network. Having a methodology for constructing networks out of knowledge embedded in
Wikipedia’s entries, we are able to extrapolate new knowledge pertaining to the chosen networks of
concepts and Wikipedia at large.

Early attempts to quantify Wikipedia using complex networks analysis were focused only on
the network structure of linked Wikipedia entries. In [216] Zlatić et al. present an analysis of
Wikipedias in several languages as complex networks. They show that many network characteristics
(degree distributions, growth, topology, reciprocity, clustering, assortativity, path lengths and triad
significance profiles) are common to Wikipedias in different languages and show the existence of a
unique growth process. The same authors studied Wikipedia growth based on information exchange
in [217]. In [212], the authors presented an analysis of the statistical properties and growth of
Wikipedia. Pemble and Bingol [27] have constructed two complex networks out of English and
German Wikipedias and analyzed conceptual networks in different languages. Other research is
focused on content and analyzes Wikipedia as a (domain) knowledge network.

Fang et al. [213] extract a specific domain knowledge network from Wikipedia (specifically,
four domain networks on mathematics, physics, biology, and chemistry). They first present an
efficient method to extract a specific domain knowledge network from Wikipedia. Furthermore, they
carry out statistical analysis on four constructed knowledge networks. They show that MathWorld
and Wikipedia Math share a similar internal structure. In [214], Masucci et al. extract the topology
of the semantic space of Wikipedia entries. They find that the topology of the semantic space is
scale-free in its connectivity distribution and displays small-world properties. They further measure
semantic flow between different Wikipedia entries (represented as a directed complex network)
and reveal the Scale-Free Architecture of the Semantic Space. In [235] authors construct four
complex networks of different areas (Biology, Mathematics, Physics, and Medicine) based on
cross-citations in the English version of Wikipedia. Entries are nodes, and the citations among
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the entries correspond to edges. They analyze the clustering coefficient, topological structure,
degree distribution, assortativity, betweenness centrality and average shortest path length . Their
results indicate that analysis of the full Wikipedia network cannot predict the behavior of isolated
categories since their properties can be very different from those observed in the full network.

Furthermore, there are certain attempts at link prediction on Wikipedia as a hyperlinked
network. In [236], authors are dealing with the task of link prediction in the structure of hyperlinked
document collections in Wikipedia . They propose a novel approach based on principal component
analysis which relies only on hyperlinks, not on the textual content of entries. The conducted
evaluation of the proposed approach shows that it improves the identification of the top missing
links. Additionally, the proposed approach can be used to identify topics an entry misses to cover
and to cluster entries semantically. In [237], authors explore statistical properties of links within
Wikipedia. They show that algorithms based only on the hyperlink structure (not on topics) can
predict new links. However, a topic-oriented PageRank algorithm can effectively identify topical
links within existing entries. Based on these results, the authors propose a link prediction approach
that combines structural requirements and topical relationships within Wikipedia.

14.3.2 The Role of Centrality Measures

The role of centrality measures is to identify the most important nodes in a network’s architecture
[238]. There are different definitions of centrality, depending on how we define a node’s importance.
Centrality measures are discriminative properties of the importance of a node in a graph and are
directly related to its structure [75]. Therefore, centrality measures have the potential to extract key
concepts from co-occurrence networks of texts. There are many studies in which various centrality
measures are exploited for the task of keyword and keyphrase identification. The extensive related
work on network centrality measures used for keyword extraction is reported in [72]. Here we
discuss only some of the approaches relevant for this study.

Mihalcea and Tarau in [104] introduce a state-of-the-art TextRank algorithm (derived from
PageRank) for keyword extraction. Boudin [80] compares various centrality measures for graph-
based key phrase extraction. He shows that simple degree centrality obtains results comparable to
the widely used TextRank algorithm; and that closeness centrality achieves the best results on short
documents. Litvak and Last [99] test approaches based on the graph-based syntactic representation
of text and web documents. They show that simple degree-based rankings from the first iteration of
HITS already have satisfactory results. Lahiri et al. [96] extracted keywords and keyphrases from
co-occurrence networks of words. They test eleven measures (degree, strength, neighborhood size,
coreness, clustering coefficient, structural diversity index, page rank, HITS hub and authority score,
betweenness, closeness and eigenvector centrality) and show that simple measures like degree and
strength outperform coreness and betweenness which are computationally more expensive.

Obviously, various centrality measures can be used for the identification of key concepts. In
this research, we adopt that assumption and aim to identify which measure is most suitable for
identifying key concepts within Wikipedia texts. We carry out an evaluation based on the original
Wikipedia hyperlink network. The performed evaluation is based on the fact that centrality measures
play an important role in link prediction. This idea can be corroborated by the fact that preferential
attachment is a well-known local similarity measure used predicting links on a local level. For
example, in [191], authors develop a supervised learning approach to link prediction using a feature
set of graph measures chosen to capture a wide range of topological structures. They include node
centrality measures for link prediction.

To summarize, our approach assumes two things: first, that centrality measures can extract
important key concepts as a set of top-rated nodes and second, that entries with a certain number of
key concepts in common can be linked in the original Wikipedia hyperlink network.
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14.4 Methodology
14.4.1 Complex Networks

A graph is an ordered pair G = (V,E) where V is the set of nodes and E ⊆V ×V is the set of edges.
A graph is directed if edges have a direction associated with them. A graph is weighted if there
is a weight function w that assigns value (a real number) to each edge. The number of nodes and
edges in a graph is denoted as N = |V | and K = |E|. A path in a graph is a sequence of edges which
connects a sequence of nodes which are all distinct from one another. A shortest path di j between
two nodes i and j is a path with the shortest length and it is called the distance between i and j.

14.4.2 Network Centrality Measures
In this Section, we provide explanations and equations for centrality measures used in our experi-
ment.
Degree centrality of a node is determined according to (in- and out-degree in the case of directed
networks) the number of nodes with which it is connected. When normalized by dividing it by the
maximum possible degree N−1 we get the following equation:

Cd(v) =
d(v)

N−1
. (14.1)

Betweenness centrality quantifies the number of times a node acts as a bridge along the
shortest path between two other nodes, i.e. it measures how many time the node is on the network’s
shortest path. Nodes with high betweenness centrality may have considerable influence within a
network by virtue of their control over information passing between other nodes. It differs from
other centrality measures in principally not being a measure of how well-connected a node is.
Instead, it measures how much a node falls between others or controls flows between others . Let
σ jk be the number of shortest paths from node j to node k and let σ jk(i) be the number of those
paths that pass through node i. The normalized betweenness centrality of a node i is then given as:

Cb(v) =
Σu6=v 6=t

σut(v)
σut

(N−1)(N−2)
. (14.2)

Closeness centrality is defined as the mean distance from a node to all other reachable nodes .
In other words, it is the inverse of farness, i.e. the sum of the shortest paths between a node and
all other nodes. So the closer a node is, the lesser its distance to all other nodes in a network. The
normalized closeness centrality of a node i is then given by:

Cc(v) =
N−1

Σv 6=udvu
. (14.3)

Eigenvector centrality can be thought of as an upgrade of standard degree centrality . Degree
centrality measures only the amount of connections a node has but disregards towards which nodes
these connections are established. Eigenvector centrality modifies this approach by giving a higher
centrality score to those connections which are made towards those nodes which are themselves
central. Thus, it measures influence within a network. A node’s eigenvector centrality has the
useful property that it can be large either because it has many neighbors or because it has important
neighbors (or both). Also, the centrality CEV of node v is proportional to the sum of the centralities
of its neighbors. For the node v and constant λ it is defined:

CEV (v) =
1
λ

Σu∈N(v)CEV (u). (14.4)
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Current-flow centralities are variations on the classical betweenness and closeness centralities
originally proposed in [229] . These measures take into account that information spread is calculated
via the assumption that it spreads as efficiently as an electrical current (current-flow). Each link is
given an arbitrary orientation, so −→e denotes the directed link corresponding to the orientation of
e ∈ E. Furthermore, the authors define the throughput of a node v ∈ V for a given supply b and
x(−→e ) defined as an electrical current vector (for more details see [229]):

τ(v) =
1
2
(−|b(v)|+Σe:v∈v|x(−→e )|). (14.5)

Finally, current-flow betweenness centrality is defined as follows :

CCFB(v) =
Σs,t∈V τst(v)

(N−1)(N−2)
, (14.6)

where τst denotes the throughput in case of an st-current.
Current-flow closeness centrality is defined as :

CCFC(v) =
N−1

Σt 6=s pst(s)− pst(t)
, (14.7)

where pst(s)− pst(t) corresponds to the effective resistance, which can be interpreted as an
alternative measure of distance between s and t.

Communicability centrality is another measure closely tied to betweenness centrality [224,
225] . Instead of considering just paths passing through nodes in a network, communicability
centrality introduces scaling so that not all paths are seen to be of equal worth, longer paths
obviously having a lower value. As such, it measures how easy it is to pass messages between
nodes in a network. We can interpret the local communicability of a node as a measure of how well
connected it is. Global communicability of the entire network can, for instance, help us discover
bottlenecks. Communicability between two nodes v and u can be calculated as the weighted sum
com(v,u) of all walks between nodes v and u. Then the total communicability of a node v is given
as:

CCC(v) = Σu∈Ncom(v,u). (14.8)

14.4.3 The Proposed Approach
Here we describe an approach for comparing network centrality measures as tools for identifying
concepts in complex networks. The main idea is a three-layer network construction in which
networks on the third layer show which entries are semantically close and share key concepts. For
the purpose of evaluation of this assumption, the last step of our experiment compares networks of
the third layer with the original network of hyperlinks on the first layer. The proposed three layers
of networks based on Wikipedia are:
• The first layer, L1 is the network of hyperlinks. This is the original network of Wikipedia

hyperlinks which serves as a referential model in the evaluation step.
• The second layer, L2 is a set of co-occurrence networks based on texts extracted from each

of Wikipedia’s entries. In these networks nodes are words, and two nodes are connected
if they co-occurred as neighboring words in the same sentence in the text. This is just an
auxiliary network which is used for extracting key concepts from an entry. Key concepts are
then identified using different network centrality measures.
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• The third layer, L3 is a concept network built upon the second layer by connecting two
entries if they share a certain number of key concepts (for different thresholds and different
centrality measures).

The details of the entire experiment are described as follows.
For the construction of the first layer, it is necessary to construct a hyperlink network. In

general, this network may contain the entirety of Wikipedia. However, due to its large scale, we
introduce certain limitations. Firstly, we choose one seed entry as a starting point from which our
network of hyperlinks will be constructed. Secondly, we chose a limited number of hyperlinks
from the seed entry to collect new entries. Thirdly, we limit the number of times (the depth of
the hyperlink network) that we would repeat the whole collection procedure. More precisely, we
introduce three limitation parameters: the seed entry (SE), the number of collected hyperlinks (NL)
and the hyperlink network depth (ND). The first layer is then a hyperlink network - a subset of the
whole Wikipedia hyperlink network, L1 = GH = (VH ,EH). Every hyperlink network is originally a
directed network. However, for the purposes of comparison and evaluation, the constructed network
will be observed as undirected.

For the construction of the second layer, it is necessary to extract the text from each entry
collected in the previous step. After that, texts should be preprocessed and prepared for the
construction of co-occurrence networks. The preprocessing of texts includes transformation into
lower caps, the removal of punctuation and stop words, and lemmatization. For each text, a
co-occurrence network is constructed. A co-occurrence network is a network created by getting a
Wikipedia entry’s text and connecting the nodes, each node being a single word, in such a way that
words occurring immediately after one another are connected. The result of this step is a second
layer which is a set of co-occurrence networks, L2 = G1 = (V1,E1), ...,Gk(Vk,Ek). The number of
networks is equal to the number of nodes in the hyperlink network.

Finally, the construction of the third layer network is based on the second layer. The nodes are
entries and two nodes (entries) are connected if entries share a certain number of key concepts. Here
again we need to define certain parameters in order to specify the key concepts and their number.
Key concepts can be identified by choosing a network centrality measure. Therefore, first we need
to specify a centrality measure (CM) that will be used for the construction. The result of applying
the centrality measure to one network (entry) is a ranking list of all the nodes in the network. Nodes
represent words, and highly ranked words can be assumed to be key concepts in the entry. Then,
we need to determine how many words from the ranked list will be used as key concepts (NKC).
Lastly, we need to set a threshold (t). The threshold is the number of the minimum key concepts
that two entries should have in common in order to be deemed related and connected with an
edge. The result is a new network, L3 = GC = (VC,EC). We call it a concept network because it
represents how Wikipedia concepts are related according to the chosen centrality measure. The
concept network has the same set of nodes as the original hyperlink network (VC = VH), but a
different set of edges. This network is observed as a weighted network where the weight represents
the number of shared key concepts. The weights are ignored for the purposes of evaluation.

The described procedure can be summarized as an algorithm performed in six main steps
outlined in the algorithm for three-layer construction.

Now it is possible to compare the concept network, GC with the hyperlink network, GH . The
comparison is performed via the Jaccard index, also known as the Jaccard overlap or the Jaccard
similarity coefficient for comparing sets. It is defined by the following equation:

JI(A,B) =
|A∩B|
|A∪B|

. (14.9)

According to the Jaccard index, we are focused only on that part of the concept network that
is the subset of the hyperlink network (as it is shown in Figure 14.1), but it is also possible to
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analyze the whole concept network. In this case, the observed part of the concept network is an
overlapping network (a subset network in Figure 14.2), Govp = (Vovp,Eovp) where Vovp =VH ∩VC

and Eovp = EH ∩EC. In terms of our experiment, we need to compare the hyperlink network’s set
of edges with that of the concept network.

JI(EH ,EC) =
|EH ∩EC|
|EH ∪EC|

. (14.10)

The described procedure can be performed repeatedly with different parameters and various
centrality measures to gain better insight into which centrality measure is the most appropriate for
extracting key concepts from Wikipedia entries. Furthermore, the same procedure can be exploited
with the aim of proposing possible missing links in the original hyperlink network. Missing links
can be proposed from the set of edges that exist in the concept network and do not exist in the
hyperlink network. In the presented experiment, we are focused only on the first part of the task and
in the following Section we present a case study in which we compare seven centrality measures.

14.5 Experiment Description: Datasets and Network Construction
For the purpose of the presented experiment, the network of choice has a seed entry "Programming
language" (SE = "Programming language"), the number of hyperlinks is set to 20 (NL = 20) and
the hyperlink network depth is set to 2 (ND = 2). Starting with a chosen seed entry, we store all
the hyperlinks to related entries from the seed entry’s text (depth 1) and proceed to extract the
hyperlinks from all the entry pages taken from the original entry (depth 2).

Therefore, the first task is the implementation of a web scraping program which extracts
hyperlinks from a Wikipedia entry’s text. The hyperlinks are extracted using a Python package for
HTML parsing called Beautiful Soup [239] which parses the HTML structure of a given HTML
document into a parse tree. By navigating the tree one can locate the tag ID which corresponds
to entry content ("mw-content-text") and proceed to extract the hyperlinks which themselves are
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Figure 14.1: The original hyperlink network constructed on the first layer (above) and a subset of
the concept network on the third layer (below). Both networks have the same number of nodes. In
the concept network, the edge between two nodes exists if these two nodes (entries) have a certain
number of common key concepts (≥ t). The subset network is a part of the concept network which
intersects with the hyperlink network.

found within paragraph (<p>) tags and finally inside link (<a>) tags in that section of the page.
The network is stored as an edge list. In such a network, each entry’s title represents a node and
it is connected to other entries hyperlinked in its text, again represented as network nodes. The
hyperlink network GH = (VH ,EH) constructed from the chosen seed entry has 302 nodes and 356
edges.

Then we construct a set of 302 co-occurrence networks, L2 =N1 = (V1,E1), ...,N302 =(V302,E302n).
Each network is based on one Wikipedia entry text . For each text, a co-occurrence network is
constructed according to the rule that all the words are nodes and two nodes (words) are connected
if and only if these two words are neighboring words in the same sentence. Before network
construction, we perform text preprocessing. Lemmatization was done by using the NLTK Python
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toolkit (Natural Language Toolkit), [33] and the included Wordnet lemmatizer. The list of stop
words that we used in order to prepare the texts for the creation of co-occurrence networks was
borrowed from Wikiminer [240] and later expanded on our own with suitable stop words that were
found missing from the original list. The removal of stop words and punctuation, and the creation
of co-occurrence networks was accomplished by using the LaNCoA toolkit (Language Networks
Construction and Analysis) , [8]. Additionally, we used Python and the NetworkX software package
developed for the creation, manipulation, and study of the structure, dynamics, and functions of
complex networks [161].

Next, we construct various concept networks, GC = (VC,EC) with different parameters. The
chosen centrality measures were: degree centrality, betweenness centrality, closeness centrality,
eigenvector centrality, current-flow betweenness centrality, current-flow closeness centrality and
communicability centrality. After experimenting with different values, we set the NKC value to
20, i.e. we choose 20 top key concepts ranked by the chosen centrality measure. By setting the
NKC value to 30, we get a more densely connected concept network, while we get the opposite
effect by setting the NKC to lower values. That helped us conclude concluded that value 20 is the
best for the NKC parameter in the case of Wikipedia. Then we experimented with three thresholds:
t = 1, t = 3, t = 5 and realized we have an opposite situation with t compared to NKC.

The creation of 3 new networks for each centrality measure resulted in 21 networks. All 21
networks were then compared with the original hyperlink network via the Jaccard index. The
detailed procedure of the preformed experiment is depicted in Figure 14.2.

14.6 Results

In this Section, we present the results of the evaluation procedure for seven centrality measures
used to identify key concepts of Wikipedia entries and compare them to determine which one gives
the top performing result. Guided by the notion that two entries are semantically related and linked
in the original hyperlink network if they share a certain number of key concepts, we provide a
comparison of centrality measures based on the original hyperlink network as the referential model.

Each of the Tables 14.1, 14.2 and 14.3 (each table for one threshold) serves to show the
comparison between the original hyperlink network and the 21 concept networks. Each row
in the table represents one centrality measure. The first two columns merely specify the basic
metrics (the number of overlapping nodes, Novp = |VH ∩VC| and the number of intersecting edges
Kovp = |EH∩EC|). The third column specifies the Jaccard index (JI) which is a measure of similarity
between the hyperlink network and the concept network at hand. According to the equation (10),
it is calculated by dividing the number of links that the two networks have in common (Kovp)
with the total number of links in the hyperlink network (KH = 356). The last column shows the
centrality measure rank according to the Jaccard index.

Centrality measure Novp Kovp JI Rank
Closeness (Cc) 265 314 0.8792 6.
Betweenness (Cb) 274 323 0.9044 4.
Eigenvector (Ce) 264 307 0.8595 7.
Degree (Cd) 283 333 0.9325 1.
Current-flow betweenness (Cc f b) 278 328 0.9185 2.
Current-flow closeness (Cc f c) 275 325 0.9101 3.
Communicability (Ccom) 273 322 0.8988 5.

Table 14.1: Performance of centrality measures with threshold t = 1.
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Figure 14.2: Details of the entire experiment for the chosen seed entry "Programming language".

In Figure 14.3 we plot the overall performance for all seven measures and the three different
thresholds shown in blue (t = 1), red (t = 2) and green (t = 3). As expected, the higher the
threshold needed to establish a link between nodes (concepts), the lower the similarity between the
networks.

Although overall results show that there are no significant differences among the seven measures,
degree centrality noticeably performs best for all thresholds, while eigenvector centrality exposes
the lowest potential in this task. These results are in line with results presented in [80,87,96] which
proved that degree centrality is a suitable network measure for extracting key terms from texts,
regardless of the used threshold value.

The current-flow betweenness and current-flow closeness centralities evaluate right underneath
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Centrality measure Novp Kovp JI Rank
Closeness (Cc) 153 170 0.4747 6.
Betweenness (Cb) 199 224 0.6264 4.
Eigenvector (Ce) 124 142 0.3960 7.
Degree (Cd) 202 235 0.6573 1.
Current-flow betweenness (Cc f b) 200 231 0.6460 2.
Current-flow closeness (Cc f c) 194 226 0.6320 3.
Communicability (Ccom) 182 217 0.6067 5.

Table 14.2: Performance of centrality measures with threshold t = 3.

Centrality measure Novp Kovp JI Rank
Closeness (Cc) 68 64 0.1797 6.
Betweenness (Cb) 111 116 0.3230 4.
Eigenvector (Ce) 61 60 0.1657 7.
Degree (Cd) 122 132 0.3679 1.
Current-flow betweenness (Cc f b) 120 131 0.3651 2.
Current-flow closeness (Cc f c) 112 119 0.3314 3.
Communicability (Ccom) 95 96 0.2668 5.

Table 14.3: Performance of centrality measures with threshold t = 5.

it regardless of the threshold value. Closeness and eigenvector measures are underperforming since
they are evaluated as lowest performing measures, regardless of the threshold.

This work is the first attempt to test current-flow betweenness centrality, current-flow closeness
centrality and communicability centrality in the task of keyword extraction. Here we report that
all three measures show good results in the task of identifying key concepts and current-flow
betweenness centrality almost yields the best results.

14.7 Conclusion

In this study, we analyze the potential of network centrality measures for identifying key concepts
in Wikipedia texts. The presented experiment is built upon two assumptions about networks: (1)
network centrality measures can identify key concepts (words) in co-occurrence networks of texts;
(2) entries with a certain number of mutual concepts are more likely to be connected and linked.

Obtained results confirm that network centrality measures have much potential for the extraction
of key terms in general. In this experiment, some centrality measures perform better (degree
centrality, current-flow betweenness centrality and current-flow closeness centrality) than others
(eigenvector centrality, closeness centrality, communicability centrality and betweenness centrality).

This is the first time that current-flow betweenness centrality, current-flow closeness centrality
and communicability measures were applied in the task of the identification of key terms. In this
experiment, current-flow betweenness centrality and current-flow closeness centrality outperform
standard betweenness and closeness centralities. This may be due to the fact that current-flow
closeness centrality is equal to information centrality [229]. In contrast to common shortest-path-
based centrality measures, information centrality takes into account all parallel paths. The same
holds true for current-flow betweenness centrality. It seems that in co-occurrence language networks
not only shortest paths are important. That makes sense since sentences may either be short or long
and key terms are positioned on different paths.
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Figure 14.3: The performance of seven centrality measures combined with three thresholds (t =
1; t = 3; t = 5).

Another novelty of the described approach is that it proposes a particular evaluation procedure
which is based on the underlying semantic relatedness of the concepts .

Overall, the two underlying contributions of this research are: (1) comparison of network
centrality measures for identifying key concepts in the context of Wikipedia; (2) a specific evaluation
procedure based on the semantic. Note that this evaluation procedure is appropriate only in the case
of Wikipedia and similar networks.

There are two limitations of this experiment. Firstly, we did not include all existing measures
in the experiment. We selected those measures which are reported to perform well with texts and
three new measures which were not tested on texts yet. Secondly, we made the experiment with
only one seed entry. In the future, we plan to extend the experiment by using more seed entries and
more centrality measures, e.g. extensions of current-flow betweeness centrality defined in [241].

Still, it seems that all tested measures perform reasonably well for lower thresholds, while
the results are more differentiated for higher thresholds. According to the second assumption
mentioned above, the presented method could also be applicable to the problem of identification of
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missing links. Hence, we plan to test the potential and performance of centrality measures for the
task of link prediction.
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15. Towards a Formal Model of Language
Networks

15.1 Abstract

Multilayer networks and related concepts have been used for the description and analysis of various
complex systems in many fields, such as for example biological, physical, social and information
sciences. In this Chapter we propose a formal model for language representation - Multilayer
Language Network (MLN) which is based on multilayer network formalism. This work presents
the first steps towards a universal formal model suitable for representation, analysis and comparison
of languages both in their entirety as well as in their various characteristics and complexity. The
goal of this research is to define a universal formal model suitable for representation, analysis and
comparison of languages, considering various language levels (subsystems) and various language
characteristics. So far diagnostic for language networks has been reported for isolated subsystems.
MLN model has the potential to extent from isolated to integral diagnostics, enabling better
insights in mutual interactions of language subsystems. Here we discuss initial steps in this
direction. Furthermore, we present MLN model for English and Croatian language, considering
word, syllable and grapheme language subsystems and various construction principles. For the
analysis we apply standard network diagnostics and present obtained results.

15.2 Introduction

The complex networks theory has been recognized as a particularly powerful framework for
studying phenomena from gene/protein or social interactions, to technological and infrastructure
systems [67, 242]. This generated a swift development of various fields and opened new research
avenues [67]. One of them is network linguistics [6, 7, 11, 22], which contributed significant results,
ranging from new models of language evolution [7, 22], to the quantitative analysis of written
novels [11]. Progress was also made in the development of tools for text analysis [243], and
mechanisms for automatic detection of polysemy [244]. Particular emphasis is constantly given to
semantic networks, whose structure and dynamics are being examined in detail [3].

Various aspects of natural language can be represented as complex networks [67], whose nodes
depict linguistic units (e.g. words), while edges model their morphosyntactic, semantic and/or
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pragmatic interactions [6, 22, 210]. This refers to language analysis through varying linguistic
levels (syntactic, semantic, phonetic [22, 210]), the examination of language evolution [3], or the
modeling of language acquisition [37]. A specific interest lies in language technologies, aiming
at developing software able to consistently carry out a desired analysis of a given text: assess the
quality of a summary, extract text context, key phrases and keywords extraction, disambiguate
word senses, estimate the translation and determine subjectivity [245]. In short, the complexity of
language as a natural evolving system is mirrored by the structural complexity of the corresponding
network model.

It has been shown that language networks share various non-trivial topological properties and
may be characterized as small-world networks and scale-free networks which are well-known and
studied classes of complex networks [3, 6, 7, 11, 22, 245]. Small-world networks [20] have a small
average shortest path length and a large clustering coefficient and scale-free networks [43] have
power-law degree distribution.

In the era of “big data” beside of the explosive growth of data we are also witnessing the swift
advances in the theoretical models of multilayer networks, suitable to consistently model different
data sources in the same framework. However, the field of complex networks has shifted from the
analysis of isolated network (capturing and modelling one aspect of the examined system) toward
the analysis of the family of complex networks simultaneously modelling different phenomena
(aspects) of examined system, or simultaneously modelling interactions and relationships among
different subsystems.

This pursuit opened a variety of different theoretical models: multilayer networks [246, 261],
multidimensional networks [247], multiplex networks [248, 249], interdependent networks [250]
and networks of networks [251]. A thorough discussion that compares, contrasts and translates
between theoretical notions of multilayer, multiplex, interdependent networks and networks of
networks is given in [168].

Multilayer network approach has been addressed in study of the international trade analysis
[253], social interactions in the massive on-line game [254], web-search queries [247], in transport
and infrastructure [246, 248] and for examining the brain function [255]. However, although
multilayer networks fit the language levels in a natural way, there have been no reports on multilayer
language networks. So far there have been only efforts to model isolated phenomena of various
language subsystems (e.g. co-occurrence [6, 11]) and examine their unique function through
complex networks, failing to explain mechanism of their mutual interaction or interplay.

This Chapter presents the first steps towards a universal formal model suitable for representation,
analysis and comparison of languages both in their entirety as well as in their various characteristics
and complexity. Such a model would be more general and expressive then existing approaches
[6, 22, 37, 243, 244]. Inspired by [168], we base our approach on multilayer networks. To the best
of our knowledge this is the first work that models languages by means of multilayer networks.

The Chapter is organized as follows. Section 15.3 introduces the formal multilayer network
model for languages. In Section 15.4 we focus on some diagnostics of the model and present some
initial experiments and results. We conclude in Section 15.5 by pointing to future work.

15.3 Formal Model
This Chapter introduces a formal model for languages based on graphs or networks. For simplicity,
we often interchange the terminology of a graph and a network. We aim to design such a model
that is universal in the sense that is suitable for the representation of all languages, for both written
and spoken forms, as well as for the comparison of various languages, and likewise suitable for the
linguistic analysis of any given language characteristics.

Kivelä at al.in [168] review and unify the terminology of existing concepts for multilayer
network structure and similar network structures from the literature. In order to relate to existing
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research, methodology and diagnostics we have tried to design our model as close as possible to
the general framework and notions given therein. On the other hand, given the specifics of what is
modeled by the formalism, i.e. languages in several of their features, we have somewhat modified
that framework and terminology.

Multilayer Language Network Model
A Multilayer Language Network (MLN) M is a quintuple M = (VM,EM,V,L,C) where
• V is a nonempty set whose elements are called nodes ;
• C is a nonempty set of perspective elements ;
• L is a set of perspects where {L0,L1,L2} is a partition of C. Perspect L0 is the language

perspect, L1 is the hierarchy perspect and L2 is the construction perspect
• For perspect L1 = {g1, . . . ,gk} sequence g1, . . . ,gk is the subsequence of the following

sequence

discourse,sentence, phrase,syntagm,word,morphem,syllable, phoneme,grapheme

(15.1)

called hierarchy, which is denoted by h1, . . . ,h9 in short ;
• an element of the set L0×L1×L2 is called a layer ;
• VM ⊆V ×L0×L1×L2 is the set whose elements are called MLN-nodes ;
• EM ⊆VM×VM is the set of edges.
An example of a multilayer language network model is given in Figure 15.1 .

Underlying graph of an MLN is defined naturally, i.e. considering all MLN-nodes as its nodes
and EM as the set of its edges. Underlying graph of an MLN model M = (VM,EM,V,L,C) is the
graph GM = (VM,EM).

For an example of an underlying graph, see Figure 15.2 containing the underlying graph
corresponding to the MNL model depicted in Figure 15.1 . Each node in the underlying graph
represents an MLN-node, e.g. (a,word,syntax), (b,word,syntax), . . . , (i,grapheme,shuffle) etc.

As custom in the graph theory, edges in an MLN may be directed or undirected, weighted or
unweighted. Consequently, we differentiate between directed MLNs, undirected MLNs, weighted
MLNs, and unweighted MLNs on the basis of the corresponding underlying graph. For example,
the MLN model presented in Figure 15.1 is directed and unweighted.

The set of nodes contains all the elements under consideration, that is linguistic units such as
sentences, words, syllables etc. that appear in the text that is modeled by the given MLN.

Language perspect denotes the type of the language or the particular languages under consid-
eration, e.g. English and Croatian . Construction perspect reflects approaches to the analysis of
language structure, such as analysis of the syntax of a given text, and the analysis of the same text
but with randomized word order . From the linguistic point of view that arises from the specifics of
the model hierarchy perspect is the most essential of perspects . It represents levels of language
denoted by the hierarchy sequence ( 15.1 ). Different MLN-s may focus on some of the language
levels while other levels may be out of the scope, which is reflected in the perspective elements of
the hierarhcy that the hierarchy perspect contains.

A layer is specified by a single perspective element from each of the perspects . Moreover,
perspects are studied in all combinations This means that layers specify all possible perspectives or
views on a language. For example, some of the layers in the model shown in Figure 15.1 are

(croatian,word,syntax) and (croatian,syllable,shuffle) .

Notice that by the above definition, depending on the set VM, some layers may be empty, with
no MLN-nodes on them. Such empty layers represent combinations of perspective elements that
are not important or not studied in that particular language analysis.
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Figure 15.1: Example of an directed unweighted MLN model. The model consists
of the following perspects: L0 = {croatian}, L1 = {word,syllable,grapheme} and L2 =
{syntax, co-occurrence, shuffle }. The language perspect is omitted for simplicity. The remaining
submodel contains the hierarchy and construction perspect. There are 9 layers denoted by (A)−(I).
Intralayer edges are represented by solid arrows, while the interlayer edges are dotted.

MLN-nodes are copies of nodes placed on different layers. For an MLN-node (a, l), where
a ∈V , l ∈ L0×L1×L2, we say that the node a appears on layer l.

Informally, we may think of an MLN model as a graph or a network with some additional
structure. In other words, MLN model and its underlying graph may be interchanged. Then
MLN-nodes are "nodes" of that graph and EM is the set of its "edges" . For simplicity, we will
sometimes say node for an MLN-node when the meaning is clear from the context.

Edges in an MLN may be defined between any of the MLN-nodes. The set of edges in an
MLN can, therefore, be partitioned into intralayer edges and interlayer edges. An intralayer edge
connects two MLN-nodes from the same layer, while an interlayer edge is an edge between two
MLN-nodes belonging to different layers.

In case that some language analysis does not require some perspect, that perspect may be
omitted from the model. In the same way new perspects can be introduced to the model, allowing
analysis of some other phenomena of interest. Submodels may for example be used in the analysis
of a single language. Then the language perspect would consist only of one language, e.g. Croatian
in the example model depicted in Figure 15.1 , and can be omitted for simplicity. Such a submodel
would only contain the remaining two perspects, hierarchy and construction perspect.

Kivelä et al in [168] review and classify multilayer networks based on the types of constraints
imposed on the network. We, however, put no constraints on the model, both with respect to nodes
as well as edges. More precisely, we allow edges between arbitrary MLN-nodes in the system but
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Figure 15.2: Underlying graph of the MLN model depicted in Figure 15.1.

do not impose edges between some MLN-nodes either. Also, a node does not need to appear on
every layer. This is different from the multiplex structure [168, 248, 249] where traditionally all
nodes appear on every layer, ı.e. all nodes are shared between all layers. Additionally, in a multiplex
there are edges between each node and its counterparts in different layers, that is, adjacency of
a node with itself across multiple layers is explicit . At the same time, in a multiplex there is no
adjacency of a node with other nodes from different layers. This is usually called diagonal coupling
and categorical coupling in the literature [168].

One of the characteristics of the MLN model is that hierarchy imposes order of linguistic levels.
The structure of language subsystems is preserved and modeled through hiearchy perspect. This is
similar to ordinal couplings [168, 256], in which layers are ordered and nodes are adjacent only to
their counterparts in consecutive (“adjacent”) layers.

Another difference to the model presented in [168] is that we allow self-edges, that is an
MLN-node being adjacent to itself. These edges would for example represent neighbouring words
such as "bla bla bla" or edges between syllables in the same word, e.g. in "banana".

Although our model can represent structures such as multiplex in principle, we do not impose
nor disallow adjacency. This approach allows wide and universal analysis and comparison of
different linguistic phenomena.

15.3.1 Interpretation of MLN
MLN model has several features. It allows universal representation of languages, their analysis in
an unifed framework, as well as comparison of various language phenomena .

For example, an MLN can model a particular Croatian novel and its linguistic units at chosen
levels, e.g. all of the words, syllables and graphemes that appear in the novel. Besides original text
of the novel, one could consider the same text but, for instance, with randomised word order on the
sentence level, or consider the syntax dependencies of words in a sentence.

The model would have the following perspects:

L0 = {Croatian}, L1 = {word,syllable,grapheme} and L2 = {syntax,co-occurrence, shuffle} .

For simplicity, we can omit the first perspect. We would then consider the MNL submodel with 2
perspects, the hierarchy and construction perspect, as is the submodel shown in Figure 15.1 .



166 Chapter 15. Towards a Formal Model of Language Networks

Figure 15.3: An example of the syntax depencency parsing for the sentence "Jabuka je na stablu.".
This translates to "The apple is on the tree." from Croatian. Syntax depencency tree for that sentence
(as per [257]) is presented to the left. Corresponding graph is given to the right.

The set of intralayer edges is typically defined in the following way. On the layer with co-
occurrence perspective element, intralayer edges connect neighbouring sentences, neighbouring
words in a sentence and neighbouring syllables in a word. Similarly, for the shuffle layers intralayer
edges are defined for linguistic units that are neighbouring in the randomized text. On the layers
with the syntax perspective element, edges connect neighbouring sentences, neighbouring syllables
in words and on the word level edges are defined betweeen words adjacent in the syntax dependency
tree of each sentence. For an example of the syntax dependency tree on a sentence in Croatian see
Figure 15.3 .

Co-occurrence as the network construction principle is sometimes extended to cover neigh-
bouring for a wider window, for more details see e.g. [18]. There are many other candidates for
construction perspect e.g. clique, where one would connect all words in a sentence as a clique, and
likewise for other language levels . In another construction one could connect words that differ only
in the last syllable [31], etc. Through language perspect variuos languages could be compared, but
also dialects of the same language as well as development and changes of a language over time.

Interlayer edges betwen layers that differ in the hierarchy perspect are typically defined
on containment bases, connecting a word with syllables it contains, connecting a syllable with
graphemes that it contains and so on, as in the MLN depicted in Figure 15.1 . Similarly, in some
cases edges could be defined between linguistic units that are not necessarily on consequent levels,
connecting for example a word with all of the graphemes it contains.

Interlayer edges are defined to reflect the analysis and comparisons of different subsystems
of an MNL model, reflecting different perspectives one takes when considering one or several
languages.

15.4 Diagnostics in MLN Model

So far diagnostic for language networks has been reported for isolated subsystems. MLN model
has the potential to extent from isolated to integral diagnostics, enabling better insights in mutual
interactions of language subsystems. Here we discuss initial steps in this direction.

Various graph and network diagnostics could be applied both to individual layers as well as to
underlaying graph of an MLN . For the linguistic analysis one can compare networks and perform
relevant diagnostics for the chosen layers.

For example, Croatian is generally considered as a mostly free word-order language. In order
to support this classification of Croatian language, some conclusions on the importance of word
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order in Croatian could be drawn e.g. from comparing layers

(croatian,word,syntax) and (croatian,word,shuffle)

of the MLN model shown in Figure 15.1 .
These listed layers differ only in one perspect, that is syntax v.s. shuffle. Comparing layers that

differ in more than one perspect can also be of interest. Since word-order is more strict in English
than in Croatian,

one could, for example, compare Croatian text with its English translation, but random-
ized on the sentence level. An MLN model suitable for such comparison could for example
be obtained by considering the MLN given in Figure 15.1 but with additional language perspect
{croatian,english}. One can visualize this model as two coppies of the model from Figure 15.1 ,
one in Croatian, other in English, with additional interlayer edges as needed. Such MLN model
would have 18 layers and, in particular, layers

(croatian,word,syntax) and (english,word,shuffle) .

would be of interest for the analysis described above.
Kivela et al. [168] review attempts to generalize single-layer-network diagnostics to multilayer

networks. This includes e.g. methods of multiway-data-analysis and tensor-decomposition. The
later method is based on representing a multilayer network as adjacency tensor .

For the MNL model M = (VM,EM,V,L,C) adjacency tensor

A ∈ {0,1}|V |×|V |×|L0|×|L0|×|L1|×|L1|×|L2|×|L2|

is such that its tensor element has value 1 if and only if there is the corresponding edge in M, and
has value 0 otherwise.

Tensor representation enables one to directly apply methods from the tensor-analysis literature
to multilayer networks .

Kivela et al. [168] show how the rank of such a tensor can be reduced. This process of tensor
"flattening" leads to the so-called supra-adjacency matrices enabling one to apply known tools and
methodology that is used for matrices.

15.4.1 The Network Structure Analysis
We now review some of the most important network measures [67] that can be applied as network
diagnostic to an individual layer or to the underlaying graph of an MLN. In this case the individual
layer or underlaying graph of an MLN are considered simply as networks or graphs.

A network or graph G = (V,E) is a pair of a set of nodes V and a set of edges E, where N is the
number of nodes and K is the number of edges. A network is directed if the edges have a direction
associated with them. A network is weighted if there is a weight function ω that assigns value (real
number) to each edge.

The density D of a network is defined as a ratio of the number of edges in the network to the
number of possible edges. For the directed networks it is calculated using following equation:

D =
K

N(N−1)
. (15.2)

A path in a network is a sequence of edges which connect a sequence of nodes that are all
distinct from one another. A shortest path between two nodes i and j is a path with the shortest
length and it is called distance between i and j and is denoted as di j. The average path length of a
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network is defined as the average number of steps along the shortest paths for all possible pairs of
network nodes. For the directed network the average path length L is calculated as:

L = ∑
i, j

di j

N(N−1)
. (15.3)

The clustering coefficient of a node measures the density of edges among the immediate
neighbors of a node. For weighted networks the clustering coefficient of a node i is denoted by ci

and defined as the geometric average of the subgraph edges weights:

ci =
1

ki(ki−1) ∑
i, j
(ŵi jŵikŵ jk)

1/3 , (15.4)

where ki is the degree of the node i, and the edges weights ŵi j are normalized by the maximum
weight in the network ŵi j = wi j/max(w). If ki < 2, then the value of ci is 0.

The average clustering of a network, C, is defined as the average value of the clustering
coefficients of all nodes in an undirected network:

C =
1
N ∑

i
ci . (15.5)

Transitivity of a network, T , is the fraction of all possible triangles present in the network.
Possible triangles are identified by the number of triads (two edges with a shared node):

T =
3#triangles

#triads
. (15.6)

The number of network components is denoted by ω . If ω > 1, C is computed for the largest
network component.

Reciprocity of a network, denoted by ρ , is defined as:

ρ =
∑i6= j(ai j−a)(a ji−a)

∑i6= j(ai j−a)2 (15.7)

where ai j = 1 if a edge from node i to j is there, and ai j = 0 if not, and the average value a =
∑i 6= j ai j

N(N−1) .
Above measures are used for the results of the experiments we conducted as is presented in the

next Section in Tables 15.1 and 15.2.

15.4.2 Experiments and Results
Multilayer Croatian (HR) and English (EN) networks are constructed from five variations of the
same collection of texts (HOBS and PENN corpora): three on the word-level (syntax, co-occurrence
and its shuffled counterpart) and two on the sub-word level (syllables and graphemes). More clearly,
five different realizations of the very same text in one language are used to construct network layers
(all weighted and directed) using five different relationships among linguistic units: syntax (SIN),
co-occurrence (CO), shuffled (SHU), syllables (SYL) and graphemes (GR).

The five variations of the text described above, naturally fit the MLN model, similar to the
model given in Figure 15.1 , but with English language perspective element added. Such MLN
model has 18 layers, but in this experiment is reduced to 10 non-empty layers, since for the syllabic
and graphemic layer we consider only the co-occurrence construction principle.

The data for multilayer Croatian network is derived from Croatian Dependency Treebank
[257]. The corpus size is currently 3,465 sentences (88,045 tokens). Dataset from the Penn Treebank
corpus [258] is used for the English multilayer network . The dataset contains 3,829 sentences
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HR CO SIN SHU SYL GR
N 23359 23359 23359 2634 34
K 71860 70155 86214 18849 491
D 0.00026 0.00026 0.00032 0.0054 0.875
L 4.01 1.81 3.74 1.86 1.58
C 0.167 0.120 0.182 0.255 0.636
T 0.004 0.003 0.013 0.120 0.522
ω 2 2 2 17 1
ρ 0.049 0.041 0.085 0.139 0.531

Table 15.1: Measures (N no. of nodes, K no. of edges, D density, L avg. path length, C clust. coeff.,
T transitivity, ω no. of components, ρ reciprocity) for co-occurrence (CO), syntax (SIN), shuffled
(SHU), syllable (SYL) and grapheme (GR) network layers in Croatian.

(94,084 tokens). Syntax Dependency Tree is a tree parsed from original sentence according to the
syntax relationships among words . For this work we use the text of original sentences for the
construction of co-occurrence [18] and shuffled layers [21], and syntax relationships from treebank
corpora for the syntax layer. Further, we decompose Croatian and English words to syllables and
graphemes.

EN CO SIN SHU SYL GR
N 10930 10930 10930 2599 26
K 50299 52221 58920 6053 333
D 0.00084 0.00087 0.00099 0.0018 1.025
L 3.465 1.959 0.454 1.876 1.511
C 0.286 0.153 0.295 0.057 0.838
T 0.009 0.014 0.016 0.020 0.654
ω 3 3 1 54 1
ρ 0.051 0.046 -0.0005 0.017 0.575

Table 15.2: Measures (N no. of nodes, K no. of links, D density, L avg. path length, C clust. coeff.,
T transitivity, ω no. of components, ρ reciprocity) for co-occurrence (CO), syntax (SIN), shuffled
(SHU), syllable (SYL) and grapheme (GR) network layers in English.

The standard network measures of all five network layers are given in Table 15.1 for Croatian
and Table 15.2 for English.

The number of nodes (N) on the word-level layers is preserved in both languages (HR: 23359,
EN: 10930). On subword-levels the inventory of linguistic units is smaller (around 2500 syllables
and 30 graphemes per language) which disables direct comparisons of network measures at word
and subword-level. Still some additional remarks are worth noticing. The average path length (L)
decrease from co-occurrence to syntax, as expected, but interestingly it is of the same range for
the syntax and syllabic layer of both languages . The clustering coefficient (C) (obtained from the
undirected versions of the same networks) increases on the syllabic sub-word level for Croatian and
decreases for English. At the same time English layers are more clustered than the Croatian ones.

One of the explanations for this difference can be found in the number of connected components
(ω) which is three times higher for English then for Croatian syllabic layer, see Tables 15.1 and
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15.2. Grapheme layers of both languages expectedly, exhibit the highest clustering coefficients.
Moreover, the Croatian syllabic layer has higher reciprocity then the corresponding word layers for
one order of magnitude. The graphemic layers of both languages exhibit peculiar features due to
the small number of nodes or in other words due to the high density (0.88 - HR; 1.03 - EN).

The transitivity (T ) shows constant increase across layers (from CO to GR) regardless of the
language. The same holds for density (D). Additionally, transitivity and density of English layers
are consistently higher then the corresponding Croatian values. This is caused by the high flectivity
of Croatian language, which results in a bigger inventory of linguistic units.

15.5 Conclusions and Future Work
Multilayer networks and related concepts have been used for the description and analysis of various
complex systems in many fields, such as for example biological, physical, social and information
sciences, for an overview see [168]. These are the first steps in the work on a multilayer network
model for languages.

MLN model is universal enough to allow extensions with additional perspects as needed. Indeed,
in the future we plan to extend the model with as many perspects as is linguistically required to
quantitatively study the structure of language in a unified framework of MLN.

From the point of view of diagnostics, MLN model allows various approaches. The most
obvious approach is through the field of graph theory and network analysis by comparison of
different layers. Similar analysis can be applied to the underlying graph of an MLN. More
characteristics of languages could be obtained through tensor analysis.

Proposed MLN model can be of high relevance for computer science as well, especially
for applications which process natural language or retrieve information. For instance in text
summarization, text quality assessment, keyword extraction etc.

All of the above approaches and results could possibly be combined to extract conclusions
about syntax, semantics and overall complexity of language. We intend to pursue research in this
direction in the future.



16. Multilayer Network of Language: a Unified
Framework for Structural Analysis of Linguistic
Subsystems

16.1 Abstract

Recently, the focus of complex networks’ research has shifted from the analysis of isolated
properties of a system toward a more realistic modeling of multiple phenomena - multilayer
networks. Motivated by the prosperity of multilayer approach in social, transport or trade systems,
we propose the introduction of multilayer networks for language. The multilayer network of
language is a unified framework for modeling linguistic subsystems and their structural properties
enabling the exploration of their mutual interactions. Various aspects of natural language systems
can be represented as complex networks, whose vertices depict linguistic units, while links model
their relations. The multilayer network of language is defined by three aspects: the network
construction principle, the linguistic subsystem and the language of interest. More precisely, we
construct a word-level (syntax, co-occurrence and its shuffled counterpart) and a subword-level
(syllables and graphemes) network layers, from five variations of original text (in the modeled
language). The analysis and comparison of layers at the word and subword-levels is employed
in order to determine the mechanism of the structural influences between linguistic units and
subsystems. The obtained results suggest that there are substantial differences between the networks’
structures of different language subsystems, which are hidden during the exploration of an isolated
layer. The word-level layers share structural properties regardless of the language (e.g. Croatian or
English), while the syllabic subword-level expresses more language dependent structural properties.
The preserved weighted overlap quantifies the similarity of word-level layers in weighted and
directed networks. Moreover, the analysis of motifs reveals a close topological structure of the
syntactic and syllabic layers for both languages. The findings corroborate that the multilayer
network framework is a powerful, consistent and systematic approach to model several linguistic
subsystems simultaneously and hence to provide a more unified view on language.

16.2 Introduction

Recently, the field of complex networks has shifted from the analysis of isolated network (capturing
and modeling one aspect of the examined system) toward the analysis of the family of complex
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networks simultaneously modeling different phenomena (aspects) of the examined system, or
modeling interactions and relationships among different subsystems. The rise of this more realistic
framework for a complex network analysis considers different layers, levels or hierarchies for
different aspects of the system. In other words, multiple phenomena are characterized by multiple
types of links across various levels of representations or various dimensions of relations for
multiple subsystems. The multilayer network approach has been addressed in the analysis of real
international trade analysis [253], social interactions in the massive online game [254], web-search
queries [247], in transport and infrastructure [246,248,252,260] and in the examination of the brain’s
function [255]. There are variations in formal representation of the multilayer networks [246, 261],
multidimensional networks [247], multiplex networks [248,249,252], interdependent networks [250,
260] and networks of networks [251, 259]. A thorough discussion that compares, contrasts, and
translates between notions of multilayer, multiplex, interdependent networks and networks of
networks is in [168], which together with [169] presents an detailed overview of multilayer network
theory.

Viewed as a unique, biologically-based human faculty [262], language has been recognized as
the reflection of the human cognitive capacities, both in terms of its structure and its computational
characteristics [263]. Studying languages at intra- and cross-linguistic levels is of paramount impor-
tance in relation to our biological, cultural, historical and social beings. Hence, human languages,
besides still being our main tools of communication, reflect our history and culture. Language can
be seen as a complex adaptive system [264], evolving in parallel with our society [265] .

Various aspects of natural language systems can be represented as complex networks, whose
vertices depict linguistic units, while links model their morphosyntactic, semantic, pragmatic, etc.
interactions. Thus the language network can be constructed at various linguistic levels: syntactic,
semantic, phonetic, syllabic, etc. So far there have been efforts to model the phenomena of various
language subsystems and examine their unique function through complex networks . Still, the
present endeavors in linguistic network research focus on isolated linguistic subsystems lacking
to explain (or even explore) the mechanism of their mutual interaction, interplay or inheritance.
Obtaining such findings is critical for deepening our understanding of conceptual universalities in
natural languages, especially to shed light on the cognitive representation of the language in the
human brain [266].

Therefore, one of the main open questions in linguistic networks is explaining how different
language subsystems mutually interact [264, 267]. The complexity of any natural language is
contained in the interplay among several language levels. Below the word-level, it is possible to
explore the type of phonology, morphology and syllabic subsystem complexity . For example, the
phonology subsystem complexity is reflected in the morphology subsystem complexity. On the
word-level, the morphology subsystem complexity reflects in the complexity of the word order,
syntactic rules and the ambiguity of lexis . Since the word order can be considered as the primary
factor (but not the only one) that determines linguistic structure, it is important to explore the
subsystems’ interactions by which it is influenced.

In this research we use the multilayer network framework to explore the structural properties of
various language subsystems and their mutual interactions. The multilayer network of a language
is constructed for the word (co-occurrence, syntax and shuffled) and subword (syllables and
graphemes) language levels . The systematic exploration of layers properties is presented for the
Indo-European family of languages: one representative of the Slavic group - Croatian, and one
representative of the Germanic group - English. The analysis and comparison of layers is employed
in order to determine structural influences and trade-offs between the subsystems of language.

Our work contributes mainly to the field of linguistic network research by proposing the
multilayer network model for language. The multilayer language network model is established
on three aspects: the network construction principle, the linguistic subsystem and the language
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of interest. Moreover, we introduce the preserved weighted overlap as the measure of word-level
layers similarity in weighted and directed networks. Finally, we propose the characterization of
word vs. subword layers relationships by correlations of triad significance profiles, as a possible
quantification of the inter layer relationships.

16.2.1 Related Work
The Language Networks
The pioneering work of Dorogovtsev and Mendes [7] describes language as a self–organizing

network of linked words. The observed word web structure distributions naturally emerge from
the evolutionary dynamics. Masucci and Rodgers [11] investigate the topology of Orwell’s 1984
within the framework of complex network theory. They exhibit local preferential attachment as
growth mechanisms of written language and the allocation of a set of preselected vertices that
have a structural rather than a functional purpose. Choudhury and Mukherjee in [6] provide a
suitable framework to model a language from three different perspectives microscopic (utterances),
macroscopic (grammar rules and a vocabulary) and mesoscopic (linguistic entities - letters, words or
phrases). The authors mainly present an overview of the structure and dynamics at the mesoscopic
level. Sole et al. [22] review the state-of-the-art on language networks and their potential relevance
to cognitive science. They also consider the intertwining of language levels related to multiple
layers of complexity in terms of the networks of connected words in order to shed light onto
the relevant questions concerning language organization and its evolution. In [210] Cong and
Liu provide an extensive insight into the language networks which positions human language as
a multi-level system in the discipline of complex network analysis. Relationships between the
system-level complexity of human language (determined by the topology of linguistic networks)
and microscopic linguistic features (as the traditional concern of linguistics) are positioned within
a holistic quantitative approach for linguistic inquiry, which contributes to the understanding of
human language at different granularities.

The Word-level Networks: Co-occurrence vs. Shuffled
The construction of language networks relies on the well-established principles of modeling word
interaction from the word order in a sentence or in short from their co-occurrence in text . A
substantial part of reported research on language networks is dedicated to a detailed structural
analysis of co-occurrence networks interpreting their topological properties in the linguistic con-
text [6, 7, 10, 11, 18]. Thus, in the linguistic co-occurrence networks properties are derived directly
from the word order in texts by connecting words within a window of certain size or sentence. Still,
the open question is how the word order itself is reflected in topological properties of the linguistic
network. One approach to address this question is to compare networks constructed from normal
texts with the networks from randomized or shuffled texts [21] and networks constructed from
syntax dependencies in texts.

The Word-level Networks: Syntax
The syntactic structure of language is captured through syntax dependency relations between a pair
of words in a sentence: the head word -– the governor of relationship and the dependent word - the
modifier . Syntax dependencies between words are formally expressed by dependency grammar
(e.g. a set of productions (rules) in the form of a grammar). The dependency grammar is used to
parse the syntactic relationships from a sentence in the form of a syntax dependency tree . Thus,
the syntax dependency treebank is the set of syntax dependency trees parsed from the sentences
in a corpus . Ferrer i Cancho et. al [23], in the seed work on syntax complex networks model the
syntactic dependency relationships of three languages comparatively (Czech, German, Romanian).
The set of analyzed languages is extended to 7 in [61], comparing the structure of global syntactic
dependency networks. The results in [60, 61] show that the proportion of syntactically incorrect
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relationships rises from about 30 % to a high 50 % in a co-occurrence networks constructed
with a window of size 2 and 3 respectively. In [17], based on the comparison of one syntactic
dependency network and two co-occurrence networks of Chinese, the authors confirm small-world
and scale-free properties, suggesting that scale-free architecture is of essential importance to the
syntax subsystem of human language. Liu et al. [24] and Abramov and Meheler [56] use network
parameters derived from the syntax relationships for hierarchical clustering of languages, deriving
the model of the genealogical similarity among 15 and 11 languages respectively. The obtained
results on syntax networks suggested that a natural approach to modeling human language is
considering the structure of the syntactic dependency relationships besides the simple word-order
relations reflected in co-occurrence networks. Amancio et al. [268] explore the Portuguese syntax
dependencies for automatic summarization of the news.

The Subword-level Networks: Syllables

The coherent results from language networks involving units smaller than words , such as sylla-
bles [30, 44], phonemes [26] or morphemes [56] are still missing. Morphological networks for
English and German are presented in [56] and the network properties are expressed in terms of graph
entropy measures. So far, syllable networks have been constructed exclusively for Portuguese [30]
and Chinese [44] . Syllables are a natural intermediate level in the analysis of spoken (as opposed
to written) language, since they carry prosody during pronunciation. The investigation of syllables
is particularly interesting for their role in language acquisition. Children begin to learn language
through syllables, culminating in the development of their mental lexicons [266, 269]. The model
of language acquisition was recreated with humanoid robots using syllables as basic units [270] or
by artificial agents [271]. Both studies witness the complexity of a language syllable system as an
important factor in language acquisition.

The Subword-level Networks: Graphemes

Language is written with a set of abstract orthographic symbols (letters of an alphabet) – graphemes.
Graphemes are the smallest semantically distinguishing units (the basic linguistic units) in a written
language, analogous to the phonemes in spoken language . The complex networks of grapheme
subsystem of language have been studied sporadically [272]. Kello and Beltz analyzed the structure
of the complex network constructed from the orthographic wordform lexicon, where words are
connected if one is a substring of the other. Phonemes have attracted more attention since many
psycholinguistics studies regarding the representation of mental lexicon used for speech production,
word recognition and language processing have been reported [25, 273–276]. Phonetic networks
are typically constructed from words in a lexicon, establishing links among phonetically similar
words – differing in one phoneme.

Network Motifs for Language

Motifs are subgraphs defined as simple building blocks of directed complex networks [51] . Motifs
are used to detect the structural similarities and differences between networks on the local level.
In [52] the significance profiles of motifs derive several superfamilies of networks - the language
networks forms one supra family based on the triad significance profile. Binemann et al. in [2]
use motifs to quantify the differences between natural and generated language. The frequencies of
three-vertex and four-vertex motifs for six languages are compared with the generated language
from n-gram statistical model (n-grams are a sequence of n units from a given text). The authors
show that the four-vertex motifs are directly interpretable by semantic relations of polysemy and
synonymy. An initial attempt to analyze undirected triads in a multiplex network, by representing
positive and negative social interactions of game players in massive online game is reported in [254].



16.3 Methods 175

The linguistic features of Croatian and English
A short recapitulation of the main properties of the Croatian and English languages establishes the
linguistic framework needed for the comparison across languages as well as for the interpretation
of insights into their structural characteristics. Croatian is a highly flective Slavic language and
words can have seven different cases for singular and seven for plural, genders and numbers.
The Croatian word order is mostly free, especially in non-formal writing. These features place
Croatian among morphologically rich and mostly free word-order languages. English grammar has
minimal inflection compared with most other Indo-European languages, therefore it is considered
to be analytic. English word order is almost exclusively subject-verb-object. Both languages are
characterized by an accentuation system developed on syllables.

English has been studied extensively in a complex networks framework [2, 6, 10, 11, 22, 24],
still no systematic effort explaining the effects of mutual interaction of different subsystems has
been reported. So far the Croatian has been quantified in a complex networks framework based
on the word co-occurrences [10, 18] and compared with shuffled counterparts [21]. The syntax
relationships of Croatian as well as syllabic subword units are novelty characterized through the
lenses the analysis of complex networks in this research.

16.3 Methods
More details about complex networks analysis and the definition of measures can be found in [67].
Here we list a short definition of measures needed for the exploration of network layers. The
network G = (V,E) is a pair of a set of vertices V and a set of links E, where N is the number of
vertices and K is the number of links. In weighted networks every link connecting two vertices i
and j has an associated weight wi j. The number of network components is denoted by ω .

For every two connected vertices i and j the number of links lying on the shortest path between
them is denoted as di j, then the average path length between every two vertices i, j is L=∑i, j

di j
N(N−1) .

If the number of components ω > 1, L is computed for the largest connected component in network.
If in a directed network there is no path between two vertices, then shortest path between two
vertices is assigned to 0.

For weighted networks the clustering coefficient of a vertex i is defined as the geometric average
of the subgraph link weights: ci =

1
ki(ki−1) ∑ j,k(ŵi jŵikŵ jk)

1/3, where ki is the degree of the vertex i,
and the link weights ŵi j are normalized by the maximum weight in the network ŵi j = wi j/max(w).
The value of ci is assigned to 0 if ki < 2. The average clustering coefficient of a network is defined as
the average value of the clustering coefficients of all vertices in an undirected network: C = 1

N ∑i ci .
The transitivity of a network is the fraction of all possible triangles present in the network.

Possible triangles are identified by the number of triads (two links with a shared vertex): T =
(3#triangles)/(#triads) .

The in-degree and out-degree kin/out
i of vertex i is defined as the number of its in and out nearest

neighbors. The in-strength and the out-strength sin/out
i of the vertex i is defined as the number of its

incoming and outgoing links, that is: sin/out
i = ∑ j w ji/i j.

The in- and out- selectivity of the vertex i is then defined as proposed in [11]:

ein/out
i =

sin/out
i

kin/out
i

. (16.1)

The power-law distribution is defined as: P(k)∼ k−γ where γ is the power-law exponent .

16.3.1 Network Motifs Analysis
Network motifs are connected and directed subgraphs (of three to up to eight vertices) occurring in
complex networks at numbers that are significantly higher than those in randomized networks with
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the same degree distribution [51,52]. Here, we analyze only triads (all possible directed three-vertex
subgraphs) by calculating their frequencies, Z-scores and triad significance profiles (TSP).

The scores Zi for each triad i is calculated using equation:

Zi =
Norig

i −〈Nrand
i 〉

σ rand
i

, (16.2)

where Norig
i is the count of appearances of the triad i in the original network, while 〈Nrand

i 〉 and
σ rand

i are the average and the standard deviation of the counts of the triad i over a sample of
randomly generated networks.

The triad significance profile T SP is the normalized vector of statistical significance scores Zi

for each triad i T SPi =
Zi√
∑i Z2

i
.

16.3.2 The Multilayer Network
Since language networks can be viewed through different aspects: different levels (e.g. word-level,
subword-level), different construction rules (e.g. co-occurrence, shuffle), different languages,
etc. there is a need for a general network model that can capture all these aspects in one single
framework. Therefore, we propose an application of general multilayer networks model introduced
by Kivelä et al. in [168] to the multilayer language networks.

According to [168], a multilayer network can have any number d of aspects defined as a
sequence L = {La}d

a=1. There is one set of elementary layers La for each aspect a. In a multilayer
network it is possible to construct a set of layers by assembling a set of all of the combinations of
elementary layers using a Cartesian product L1× ...×Ld .

The multilayer network is a quadruplet M = (VM,EM,V,L), where VM ⊆V ×L1× ...×Ld that
contains only the vertex-layer combinations in which a vertex is present in the corresponding layer,
and where EM is a set of pairs of the possible combinations of vertices and elementary layers,
EM ⊆ VM×VM. V is a set of all vertices in all layers. Multiplex is a special case of multilayer
network, which satisfies the condition that the set of vertices is shared across layers. Thus, in a
multilplex network inter layer connections between different layers have 1:1 or 0:1 cardinality of
relationships.

Next we present equations for the calculation of the overlap between two layers. These
equations can be applied only to a multiplex network, when two layers share the same vertices (e.g.
in our case it is applicable only to the construction aspects of the word-level layers in one language).
In the following text we use only α and α ′ for the shorter notation of the one layer in the multilayer
network.

Jaccard index for link overlap between two network layers α and α ′ is :

J(Eα ,Eα ′) =
| Eα ∩Eα ′ |
| Eα ∪Eα ′ |

. (16.3)

In the same way we can calculate the Jaccard index for weight overlap (W ).
The preserved weighted ratio on intersected links between network layers α and α ′ is (modified

from total weighted overlap [249]) is :

PW (Eα ,Eα ′) = ∑
i, j

min(wi jα ,wi jα ′ )

max(wi jα ,wi jα ′ )
. (16.4)

The preserved weighted overlap (WO) is a normalized preserved weighted ratio :

WO(Eα ,Eα ′) =
PW (Eα ,Eα ′)

| Eα ∩Eα ′ |
. (16.5)
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16.3.3 Croatian and English Datasets
The data sets for multilayer Croatian networks are derived from the HOBS corpus - the first version
of the Croatian Dependency Treebank [257]. HOBS is extracted as a part of the Croatian National
Corpus [258] and annotated at the analytical layer following the Prague Dependency Treebank
formalism adapted to Croatian. The corpus size is currently 3,465 sentences (88,045 tokens) .

The English dataset contains 3,829 sentences (94,084 tokens) from the Penn Treebank cor-
pus [277, 278]. The size of the extracted Penn subset is intentionally of the same size as HOBS in
order to allow for systematic comparisons across the layers, constructed from comparable corpora
of different languages .

Multilayer Croatian (HR) and English (EN) networks are constructed from five variations
of HOBS and Penn corpora: three on the word-level (syntax, co-occurrence and it’s shuffled
counterpart) and two on the subword-level (syllables and graphemes). More clearly, five different
realizations of the very same text in one language are used to construct the network layers (all
weighted and directed) using five different relationships among the linguistic units: syntax (SIN),
co-occurrence (CO), shuffled (SHU), syllables (SYL) and graphemes (GR) .

16.3.4 Language Networks Construction
The language networks construction principle arises form the vary nature of text (and speech), which
is always advancing in an onward direction, hence to use directed and weighted links representing
relations among linguistic units [11,18,210]. The co-occurrence relation is established between two
adjacent words within a sentence (CO), where the direction of link reflects the words sequencing
and weight on the link reflects the frequency of words-pair mutual appearance .

The syntax relationships among word-pairs are parsed from the HOBS and Penn, as well as
the text of the original sentences [277]. The sentences’ boundaries are preserved, since the syntax
dependency is inherent to the sentence (SIN). Thus, the sentence boundaries are considered as
linkage delimiters for the co-occurrence layers as well .

Next, the original text is shuffled in order to obtain a shuffled counterpart (SHU), again
considering the sentence boundaries. Commonly, the shuffling procedure randomizes the words in
the text, transforming the text into a meaningless form. We shuffled the words within the original
sentences, preserving the vocabulary size, the word and sentence frequency distributions, the
sentence length (the number of words per sentence) and sentence order [21]. Figure 16.1 (top part)
presents the principles of word-level layers’ construction for one sentence .

Next, we use the Croatian syllabification with a maximal onset algorithm to prepare the last
data set – syllables [280], again from the words in the original sentences. The English syllables
are obtained from the dictionary with syllabified words [279]. The process omitted words which
were not contained in the syllabified dictionary. The syllable layers are constructed from the
co-occurrence of syllables within words (SYL) - presented at the (D) part of Figure 16.1 .

Finally, we consider the set of graphemes present in words, where graphemes (GR) represent
the most elementary subsystem of each language - orthographical. Since, there are some foreign
words present in the used corpora we preserved the original orthographic symbols, resulting in
a slightly larger number of graphemes (e.g. in Croatian foreign names contain original diacritic
symbols, so we obtained q, w, x, y as Croatian graphemes as well) .

Multilayer language network for this work can be defined with the set L of three aspects:
construction L1, linguistic subsystem L2 and language L3, where L1 ={co-occurrence, syntax,
shuffle}, L2 = {word,syllable,grapheme} and L3 = {Croatian,English}. Therefore, it is possible
to have 18 different layers in total (3x3x2), although not all the layers are of equal interest. More
precisely, one can note that some layers are equal due to the specific construction rules. Since
we connect only neighboring syllables within the word, all three layers (co-occurrence, syllable,
Croatian), (syntax, syllable, Croatian) and (shuffle, syllable, Croatian) are equal. The same holds
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Figure 16.1: The multilayer language network. Three word-level layers: (A) co-occurrence; (B)
syntax; (C) shuffled; and two subword-level layers: syllables (D) and graphemes (G) constructed
from the English sentence "Cray Computer has applied to trade on NASDAQ."; according to three
aspects of multilayer network model of language: construction, linguistic subsystem and language.
Note- layers (E) and (F); (H) and (I) are gray, since they are disregarded in analysis (identical with
layers (D) and (G) respectively).

for English syllables, and for graphemes in both languages as well, as shown gray for (E), (F), (H)
and (I) parts of Figure 16.1.

It is worth noticing, that the word-level layers are forming the multiplex networks (have 1:1
inter- connections), while the connections between word and subword layers are not coupled (have
N:M inter- connections).

To sum up, in total we construct ten layers: five of Croatian (syntax, word, Croatian), (co-
occurrence, word, Croatian), (shuffle, word, Croatian), (co-occurrence, syllable, Croatian), (co-
occurrence, grapheme, Croatian) and five of English language (syntax, word, English), (co-
occurrence, word, English), (shuffle, word, English), (co-occurrence, syllable, English), (co-
occurrence, grapheme, English), with shortened notations: SIN-HR, CO-HR, SHU-HR, SYL-HR,
GR-HR, SIN-EN, CO-EN, SHU-EN, SYL-EN and GR-EN.

Multilayer network construction and analysis was implemented with the Python programming
language using the NetworkX software package developed for the creation, manipulation, and
study of the structure, dynamics, and functions of complex networks [8]. The frequencies and triad
significant profiles of motifs are obtained with the FANMOD tool [55].

16.4 Results

Initially we explore the characterization of all isolated layers with the standard set of network
measures (see Methods Section). The results for all ten network layers (for both languages) are
in Table 16.1. The networks are of different sizes, however, the presented measures (L, C and
T ) are all normalized (by the number of nodes). More important, all networks for one language
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are constructed form the same text and that gives us the possibility to compare various linguistic
realizations of the same source text. Even the datasets for two languages contain approximately the
same number of sentences, allowing for comparisons between languages as well. The average path
length (L) decrease from co-occurrence to syntax, as expected, but interestingly it is of the same
range for the syntax and syllabic layer. The clustering coefficient (C) (obtained from the undirected
versions of the same networks) increases on the syllabic subword-level for Croatian and decreased
for English. The clustering of English CO and SHU word-levels are higher than their Croatian
counterparts. Still, clustering coefficients of SIN layers in both languages are of the same range.

Also, the Croatian syllabic layer has the transitivity higher than the corresponding word layers
by one order of magnitude. The numbers of connected components in SYL layers are the highest
compared with other layers, and three times higher for English than Croatian. The graphemic layers
of both languages exhibit peculiar features due to the small number of vertices, or in other words,
due to the high density of GR networks (0.9 - HR; 1.03 - EN).

CROATIAN ENGLISH
CO SIN SHU SYL GR CO SIN SHU SYL GR

N 23359 23359 23359 2634 34 10930 10930 10930 2599 26
K 71860 70155 86214 18849 491 50299 52221 58920 6053 333
L 4.01 1.81 3.74 1.86 1.58 3.47 1.96 0.45 1.88 1.51
C 0.167 0.120 0.182 0.255 0.636 0.286 0.153 0.295 0.057 0.838
T 0.004 0.003 0.013 0.120 0.522 0.009 0.014 0.016 0.020 0.654
ω 2 2 2 17 1 3 3 1 54 1

Table 16.1: The standard network measures for ten layers. Measures (N no. of vertices, K no.
of links, L avg. path length, C clust. coeff., T transitivity, ω no. of components) for co-occurrence
(CO), syntax (SIN), shuffled (SHU), syllable (SYL) and grapheme (GR) network layers in Croatian
and English.

16.4.1 Word-level Layers
For the word-level layers we initially examine the distributions. Figure 16.2 shows the rank
distributions for in- and out- degrees of word-level layers in both languages. The exploitation of the
same data source per each language caused the high overlap of exposed distributions. Analogously,
the in- and out- strength distributions are overlapped as well, for both languages. The power-law γ

coefficients for all distributions of word-level layers are in a range between 2.14 and 2.49; thus CO,
SIN and SHU layers exhibit the power-law distributions for degree and strength regardless of the
language.

The potential of selectivity (in- and out-) to differentiate between different text types [71] or the
ability to extract keywords [59] (identifying and ranking the most representative features of the
source text) is restated in this work for the differentiation of language layers as well. Figure 16.3
reveals that the rank distributions of in- and out- selectivity for all word-level layers are apart.
Selectivity distributions of all three layers co-occurrence (CO), syntax (SIN) and shuffled (SHU)
are separated for both languages.

The correlation matrices in Figure 16.4 show the intra (CO-CO, SHU-SHU and SIN-SIN) and
inter layer (CO-SHU, CO-SIN and SHU-SIN) correlations in terms of in- and out- degree, in- and
out- strength, in- and out- selectivity distributions. The correlation values for syntax layers of
both languages are lower than the corresponding values for the co-occurrence and shuffled layers.
Notably, the degree and strength correlation values are higher than the selectivity ones, regardless
of the language and layer. Furthermore, Croatian is characterized by higher intra and inter layer
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Figure 16.2: The word-level layers degree rank distributions. Rank distributions of in- (A) and
out- (B) degrees for word-level layers: co-occurrence (CO-HR, CO-EN), syntax (SIN-HR, SIN-EN)
and shuffled (SHU-HR, SHU-EN).

Figure 16.3: The word-level layers selectivity rank distributions. Rank distributions of in- (A)
and out- (B) selectivity for word-level network layers: co-occurrence (CO-HR, CO-EN), syntax
(SIN-HR, SIN-EN), shuffled (SHU-HR, SHU-EN).

correlations than English.
In order to obtain a deeper insight into word-level inter layer relationships we calculated the

Jaccard overlap percentage, the percentage of total overlapped weight (W) and the percentage
of the preserved weighted overlap (WO) for the overlapping links between word-level layers
pairwise (Table 16.2) . The highest percentage of overlapped links is inherent for the intersection
of the co-occurrence and syntax layer in both languages, while the overlaps with shuffled layer
are expectedly, lower . Furthermore, for both languages the percentage of preserved overlapped
weights is relatively high, although slightly lower for English, bearing in mind that less than 20%
of the total possible weights on the total intersected links are preserved.

16.4.2 Subword-level vs. Word-level Layers
Subword-level layers syllabic (SYL) and graphemic (GR) in both languages exhibit the power-law
γ coefficients between 1.7 and 4.42, which is broader than the observed range of the word-level
layers .

If we compare the syllabic layers of both languages, it is possible to notice some differences
between Croatian and English. English syllables are characterized by distributions closer to the
word-level layers distributions (γ coefficients between 1.87 and 2.14). The Croatian syllabic
layer distributions reveal some deviations (γ coefficients are lower - between 1.72 and 1.94). The
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Figure 16.4: Intra and inter layers correlations matrices. The correlations matrices for Croatian
(A) and English (B): in- out- degree, in- & out- strength and in- & out- selectivity respectively,
presenting inter and intra layer correlations for co-occurrence (CO), shuffled (SHU) and syntax
(SIN) word-level layers (all p-values ≤ 0.001).

CROATIAN ENGLISH
CO - SIN CO - SHU SIN - SHU CO - SIN CO - SHU SIN - SHU

Jaccard 16.72 % 5.47 % 4.81 % 13.44 % 6.31 % 5.34 %
W 18.96 % 6.43 % 5.63 % 13.58 % 6.28 % 4.82 %
WO 90.6 % 76.6 % 74.6 % 90.00 % 74.72 % 73.81 %

Table 16.2: Overlap of word-level layers.The Jaccard overlap percentage, total weighted overlap
percentage (W) and preserved weighted overlap percentage (WO) between word-level layers
(pairwise) for Croatian and English.

grapheme layers have γ coefficients between 1.7 and 4.16 for Croatian and 2.34 and 4.11 for
English.

However, in the multilayer language networks it is interesting to take additional insights of the
inter layer relationships, mainly to explore the relationships between word vs. subword layers. For
this purpose we introduce the analysis of motifs. We exploited the motif frequencies as well as the
normalized triad significance profiles (TSP) of all layers for the analysis. The Pearson correlations
for all pairs of network layers in Table 16.3 highlight that motif’s frequencies in all layers, with
the exception of the graphemic layer are correlated. Correlations of normalized TSP indicate that
SIN and SYL layers in both languages and additionally for English also CO and SIN layers expose
similarities. In order to obtain a deeper insight the normalized significance profiles for CO - SIN -
SYL layers of Croatian and English per 13 triadic motifs are compared in Figure 16.5.

16.5 Discussion
The presented findings show that standard network measures on isolated layers exhibit no substantial
differences across layers, only slight variations between word and subword-levels. Although, if we
compare the structural differences across the examined languages there are indications of different
principles in their organization. For instance, English is characterized by higher clustering, with the
exception of the syllabic layer. The English syllabic layer has 54 components, while Croatian has
17, which is reflected in the low clustering coefficient of English syllables. This is caused by high
flectivity of Croatian, where many words share the suffix - the last syllable, which decreases the
number of components, and increases the clustering coefficient. This observation raises a question,
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CROATIAN ENGLISH
Freq. T SP Freq T SP

CO-SHU 0.99 0.01 0.93 -0.26
CO-SIN 0.95 0.42 0.91 0.92
CO-SYL 0.96 -0.03 0.86 0.73
CO-GR -0.18 -0.26 -0.30 0.39
SHU-SIN 0.93 0.39 0.84 0.04
SHU-SYL 0.96 0.32 0.74 0.35
SHU-GR -0.15 -0.28 -0.17 -0.27
SIN-SYL 0.95 0.83 0.99 0.91
SIN-GR -0.20 -0.21 -0.31 0.28
SYL-GR -0.21 -0.15 -0.33 0.12

Table 16.3: The Pearson correlations of triad frequencies and normalized triad significance
profiles.The Pearson correlations of triad frequencies and normalized triad significance profiles
(T SP) for all pairs of network layers (co-occurrence (CO), syntax (SIN), syllables (SYL) and
graphemes (GR) for Croatian and English (all p-values ≤ 0.001, emphasized values ≥ 0.8).

Figure 16.5: The normalized triad significance profiles. The normalized triad significance
profiles for 13 triadic motifs following the enumeration in [52] comparing co-occurrence (CO),
syntax (SIN) and syllables (SYL)layers for Croatian (A) and English (B).

which properties will the morpheme language subsystem expose during the incorporation into a
multilayer language framework?

Even a standard distribution analysis is not sufficient to take a deeper insight into the mutual
influences between subsystems of language. The (in-/out-) degree and strength distributions of the
word-level layers are overlapped due to the same word frequencies reflected from the same data
source. Therefore, the standard approach to study the structure of linguistic networks showed no
discrepancies among layers. However, the (in-/out-) selectivity values are potentially capable of
quantifying differences, namely to show the potential of revealing the interplay among the layers.

The inter layer degree and strength correlations suggest that CO-SHU layers are more related
than the CO-SIN, and SIN-SHU pairs, due to the preserving Zipf’s law during shuffling [21]
(reflecting the utilization of the same data source). In-distributions for syntax layers in both
languages have higher values than the corresponding out-distributions, and generally SIN is less
inter correlated than the CO and SHU layers. The inter and intra layer correlations in the multilayer
language network suggest the manifestation of different governing principles in the syntax structure
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of the examined languages. This is primarily reflection of the rich Croatian morphology. The
interesting part is that this is the first observable indication of differences between languages
manifested in a multilayer analysis framework, which encouraged a deeper investigation. In
addition, the selectivity distributions (regardless of side or layer or language) are not correlated,
supporting the potential of selectivity as a measure capable to quantify structural differences across
language subsystems. Moreover, Croatian exhibits higher correlations then English in general.

The examination of the word-level layers overlap reveals additional insights into the mutual
interplay between the layers. The weighted overlap provides a thorough insight into the intersection
of links between network layers. It seems that WO is more appropriate to approximate the overlaps
of layers in weighted networks than the commonly employed Jaccard measure. As expected,
CO-SIN layers are more overlapped than shuffled pairs, and Croatian syntax is better captured
through words co-occurrences than the English. The preserved weights on intersected links indicate
that around 10% of the co-occurrence frequencies are not consistent with overlapped syntax
dependencies. The proposed measure of preserved weighted overlap seems adequate to quantify
the similarity of word-level layers in weighted and directed multilayer networks of language.

The subword layer’s analysis reveals that the syllabic layer plays an important role in the
manifestation of principles governing the construction of word layer, which is different for the
examined languages. The graphemic layers, on the other hand, share characteristics, which
are reflections of the high density of the graphemic networks (almost complete graphs in both
languages).

The obtained multilayered language analysis results manifest different driving principles
beneath the co-occurrence, shuffled, syntactic, syllabic and graphemic layers, which was not
obvious through the analysis of isolated layers. In order to obtain deeper insight into these relations
we utilize the analysis of motifs, which reveal a close topological structure in the syntactic and
syllabic layers of both languages. The correlations of the motifs’ frequencies are more emphasized
in Croatian. The triad significance profiles (TSP) are correlated between syntax and syllables
regardless of the language, while English additionally exhibits a correlation between co-occurrence
and syntax layers. It seems that the observed TSP correlations reflect the properties of the Croatian
- the free word-order which caused different characterizations of the co-occurrence and syntax
layers. Moreover, the high flectivity of Croatian is reflected in many suffixes realized by syllables.
Therefore, the structure of layers also reflects the morphological properties inherent to the language,
which should we examine more deeply in the future.

Our findings are in line with previous observations in language networks research. For instance,
Ferrer i Cancho [60] reports that the amount of syntactically incorrect links in co-occurrence
networks can increase to a high of 70%, and elaborates: "About 90% of syntactic relationships take
place at a distance lower or equal than two, but word co-occurrence networks lack a linguistically
precise definition of link and fail in capturing the characteristic long-distance correlations of words
in sentences." This adequately explains the driving principle of the CO-SIN relationships which we
have confirmed in this research. Still, an explanation of the linguistic grounding for the SIN-SYL
relationships remains an open challenge.

Our results strongly suggest that there are some properties which are inherent in the word-level
layers and not for the subword layers; while some are inherent in the word-subword relations. More
precisely, it seems that syntax and syllables exhibit influences of the same linguistic phenomena.

16.6 Conclusion
In this research we use the multilayer networks’ framework to explore various language subsystems’
interactions. Multilayer networks are constructed from five variations of the same original text: three
on the word-level (syntax, co-occurrence and it’s shuffled counterpart) and two on the subword-level
(syllables and graphemes). The analysis and comparison of layers at word and subword-levels is
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employed in order to determine the mechanism of mutual interactions between different linguistic
units.

The presented findings corroborate that the multilayer framework can meet the demands in
expressing the complex structure of language. According to these results one can notice substantial
differences between the networks’ structures of different language layers, which are hidden during
the exploration of an isolated layer, regardless of modeled language (e.g. Croatian or English).
Therefore, it is important to include all language layers simultaneously in order to capture all
language characteristics in the systematic exploration.

The multilayer network framework is a powerful, consistent and systematic approach to model
several linguistic subsystems simultaneously and to provide a more general view on language.
The word-level layers can be represented as multiplex networks (the coupled links have 1:1 or 0:1
inter-connections), while the connections between word and subword layers are not coupled (have
N:M inter-connections). Hence, defining the unified theoretical model for the multilayer language
networks is essential for further endeavors in the research of linguistic networks.

These findings reveal a variety of new and thrilling questions which will open new paths for
future research in network linguistics. To conclude, we are at the very beginning of an exciting and
challenging pursuit. Hence, our future research plans involve: exploring the relationships of other
languages’ subsystems (i.e. morphological, phonetic), defining the theoretical model capable of
capturing all structural variations of language subsystems’ relationships and eventually explain the
governing principle of mutual interactions and conceptual universalities in natural languages.
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guage Networks, Information and Software Technologies, Communications in Computer and
Information Science, Springer, vol. 538, 469-479, 2015.





Index

A

adjacency tensor . . . . . . . . . . . . . . . . . . . . . . . 169
annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
area under the receiver operating characteristic

curve . . . . . . . . . . . . . . . . . . . . . . . . . 123
assortativity . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
assortativity coefficient . . . . . . . . . . . . . . . . . 140
authority score . . . . . . . . . . . . . . . . . . . . . . 71, 76
average clustering coefficient . . . . . 18, 24, 139
average path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
average path length . . . . . . . . . . . . . . . . . . 16, 25

B

balanced corpus . . . . . . . . . . . . . . . . . . . . . . . . . 33
betweenness centrality . . . . 71, 75, 85, 94, 151
big data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
blog corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
blogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

C

categorical coupling . . . . . . . . . . . . . . . . . . . . 167
centrality measures . . . . . . . . . . 56, 70, 92, 148
clique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 168
closeness centrality . . . .71, 75, 85, 92, 94, 151
clustering coefficient . . . . 15, 25, 70, 105, 177
co-occurrence layer . . . . . . . . . . . . . . . . . . . . 170

co-occurrence networks15, 45, 57, 60, 79, 155,
170, 175, 179

co-occurrence window . . . . . . . . . . . . 16, 45, 60
communicability . . . . . . . . . . . . . . . . . . . . . . . 158
communicability centrality . . . . . . . . . . . . . . 152
community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
community detection . . . . . . . . . . . . 47, 93, 140
complex networks . . . . . . . . . . . . . . . . . . . 15, 23
conditional random fields . . . . . . . . . . . . . . . . 73
connectedness . . . . . . . . . . . . . . . . . . . . . . 75, 149
construction perspect . . . . . . . . . . . . . . . . . . . 165
corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 41
corpus preparation . . . . . . . . . . . . . . . . . . . . . . 58
cosine similarity . . . . . . . . . . . . . . . . . . . . . . . . 75
Croatian dependency treebank . . . . . . 170, 179
current-flow betweenness . . . . . . . . . . . . . . . 148
current-flow betweenness centrality . 152, 158
current-flow centrality . . . . . . . . . . . . . . . . . . 152
current-flow closeness . . . . . . . . . . . . . . . . . . 148
current-flow closeness centrality . . . . 152, 158

D

degree centrality . . . . . . . . . . . . . . . . . 70, 75, 85
degree distribution . . . . . . . . . . . . . . . . . . . 17, 26
density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
diagonal coupling . . . . . . . . . . . . . . . . . . . . . . 167
diameter . . . . . . . . . . . . . . . . . . . . . . . . .16, 24, 25
directed network . . . . . . . . . . . . . . . . . . . 79, 140
directed networks . . . . . . . . . . . . . 26, 33, 40, 60



206 INDEX

distribution of frequencies . . . . . . . . . . . . . . . 24
document collection . . . . . . . . . . . . . . . . 65, 150
document representation . . . . . . . . . . . . . . . . . 65
document summarization . . . . . . . . . . . . . . . . 66

E

edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
edgelist . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60, 107
eigenvector centrality . . . . . . . . . . . . 71, 93, 151
ER random graph . . . . . . . . . . . . . . . . . . . . . . . 33
Erdös-Renyi random networks . . . . . . . 39, 141
Euclidean space . . . . . . . . . . . . . . . . . . . . . . . . . 67

F

first-neighbour network . . . . . . . . . . . . . . . . . . 40
formal model . . . . . . . . . . . . . . . . . . . . . . . . . . 164

G

Girvan-Newman’s algorithm . . . . . . . . . . . . 140
global network measures . . . . . . . . . . . . 56, 103
graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
graph-based keyword extraction . . . . . . . . . . 84
grapheme . . . . . . . . . . . . . . . . . . . . . . . . . . 57, 176
grapheme layer . . . . . . . . . . . . . . . . . . . . . . . . 170
grapheme network . . . . . 57, 61, 170, 176, 179
graphlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

H

hand-annotated data . . . . . . . . . . . . . . . . . . . . . 91
hashtag . . . . . . . . . . . . . . . . . . . . . . . . . . . 112, 120
hashtags networks . . . . . . . . . . . . . . . . . 125, 130
hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
hierarchy perspect . . . . . . . . . . . . . . . . . . . . . 165
hipergraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
HITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71, 76
hub score . . . . . . . . . . . . . . . . . . . . . . . . . . . 71, 76

I

in-degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
in-degree centrality . . . . . . . . . . . . . . . 70, 85, 94
in-selectivity . . . . . . . . . . . . . . . . 71, 85, 95, 177
in-strength . . . . . . . . . . . . . . . . . . . . . . . . . . 70, 85
information centrality . . . . . . . . . . . . . . . . . . . 75
information propagation . . . . . . . . . . . . . . . . 120
information retrieval . . . . . . . . . . . . . . . . . . . . .65
inter-annotator agreement . . . . . . . . . . . . . . . 100

interlayer edge . . . . . . . . . . . . . . . . . . . . 166, 178
intralayer edge . . . . . . . . . . . . . . . . . . . . 166, 178
inverse participation ratio . . . . . . . . . . . . . . . . 56
inverse selectivity . . . . . . . . . . . . . . . . . . . . . . 122

J

Jaccard index . . . . . . . . . . . . . . . . . . . . . 153, 178
Jaccard overlap . . . . . . . . . . . . . . . . 61, 153, 182
Jaccard similarity coefficient . . . . . . . . . . . . 153

K

key concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 148
keyword . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65, 92
keyword assignment . . . . . . . . . . . . . . . . . . . . . 66
keyword candidates . . . . . . . . . . . . . . . . . . . . . 97
keyword extraction . . . . . . . 65, 66, 83, 92, 148
knowledge network . . . . . . . . . . . . . . . . 138, 149

L

LaNCoA toolkit . . . . . . . . . . . . . . . 56, 115, 156
language. . . . . . . . . . . . . . . . . . . . . . . . . . .15, 174
language acquisition . . . . . . . . . . . . . . . . . . . 164
language classification . . . . . . . . . . . . . . . . . . . 31
language differentiation . . . . . . . . . . . . . . . . . . 31
language networks . . . . . . . . . . . . . . . . . . . . . 175
language perspect . . . . . . . . . . . . . . . . . . . . . . 165
language sublevels . . . . . . . . . . . . . . . . . . . . . . 57
language subsystem . . . . . . . . . . . . . . . 164, 174
language technologies . . . . . . . . . . . . . . . . . . 164
largest component . . . . . . . . . . . . . . . . . . 25, 138
layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61, 165
lemmatization . . . . . . . . . . . . . . . . . . . . . . . 16, 59
linguistic networks . . . . . . . . . . . . . . . . . . . . . . 31
linguistic units . . . . . . . . . . . . . . . . . . . . . . . . . 163
link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 177
link overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
link prediction . . . . . . . . . . . . . . . . . . . . 120, 125
local network measures . . . . . . . . . . . . . 56, 103
local similarity measures . . . . . . . . . . . . . . . 120

M

massive datasets . . . . . . . . . . . . . . . . . . . . . . . . 67
microblogs . . . . . . . . . . . . . . . . . . . . . . . . . 77, 111
minimum-cut . . . . . . . . . . . . . . . . . . . . . . . . . . 140
MLN-model . . . . . . . . . . . . . . . . . . . . . . 167, 168
MLN-node . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166



INDEX 207

modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
morpheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
morphological networks . . . . . . . . . . . . . . . . 176
motif . . . . . . . . . . . . . . 47, 49, 56, 176, 178, 183
multi-topic web pages . . . . . . . . . . . . . . . . . . . 76
multigraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
multilayer language network . . . 164, 165, 174,

178
multilayer networks . . . . . . . . . . . . . . . 164, 179
multiplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
multiplex networks . . . . . . . . 61, 164, 167, 178

N

n-grams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
natural language processing . . . . . . . . . . . 40, 41
nearest neighbors . . . . . . . . . . . . . . . . . . . . . . . 15
network component . . . . . . . . . . . . . . . . . . . . 177
network efficiency . . . . . . . . . . . . . . . . . . . . . 114
network enabled keyword extraction . . . . . . 91
network entropy . . . . . . . . . . . . . . . . . . . . . . . . 56
network evolution . . . . . . . . . . . . . . . . . . . . . . . 40
network layers . . . . . . . . . . . . . . . . . . . . . . . . . 170
network level measures . . . . . . . . . . . . . . . . . . 92
network transitivity . . . . . . . . . . . . . . . . . . . . 114
networks construction . . . . . . . . . . . . . . . . . . . 56
node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 165
node level measures . . . . . . . . . . . . . . . . . . . . . 92
NP-chunks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

O

out-degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
out-degree centrality . . . . . . . . . . . . . . 70, 85, 94
out-selectivity . . . . . . . . . . . . . . . 71, 85, 95, 177
out-strength . . . . . . . . . . . . . . . . . . . . . . . . . 71, 85

P

PageRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
parallel texts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
part-of-speech tag . . . . . . . . . . . . . . . . . . . . . . . 72
Penn treebank . . . . . . . . . . . . . . . . . . . . . 170, 179
perspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
perspective element . . . . . . . . . . . . . . . . . . . . 165
phoneme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
phonetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
phonetic networks . . . . . . . . . . . . . . . . . . . . . 176
power-law degree distribution . . . . . . . . . . . . 43
power-law distribution . . . . . . . . . . . 19, 24, 177

preserved weighted overlap . . . . . . . . . 178, 182
preserved weighted ratio . . . . . . . . . . . . . . . . 178

R

rand-esu algorithm . . . . . . . . . . . . . . . . . . . . . . 50
random networks. . . . . . . . . . . . . . . . . . . . . . .141
rank diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 123
ranking algorithm . . . . . . . . . . . . . . . . . . . . . . . 75
reciprocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

S

scale-free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
scale-free network . . . . . . . . . . . . . . . . . 112, 164
selectivity 24, 25, 56, 71, 85, 92, 95, 105, 122
selectivity-based keyword extraction . . . 77, 97
semantic relatedness . . . . . . . . . . . . . . . . 76, 159
semantic relations . . . . . . . . . . . . . . . . . . . . . . . 93
SemanticRank . . . . . . . . . . . . . . . . . . . . . . . . . . 76
sentiment analysis . . . . . . . . . . . . . . . . . . . . . . 111
Shannon’s entropy . . . . . . . . . . . . . . . . . . . . . . 74
short documents . . . . . . . . . . . . . . . . . . . . . . . . 92
shortest path . . . . . . . . . . . . . . . . . . . . . . . . 16, 25
shuffled layer . . . . . . . . . . . . . . . . . . . . . . . . . . 170
shuffled network . . . . . . . 24, 57, 170, 175, 179
shuffled text . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
shuffling . . . . . . . . . . . . . . . . . . . . . . . . 26, 56, 59
single document . . . . . . . . . . . . . . . . . . . . . . . . 75
small-world . . . . . . . . . . . . . . . . . . . . . . . . . 18, 24
small-world networks . . . . . . . . . . 43, 141, 164
social network . . . . . . . . . . . . . . . . . . . . . . . . . 111
speech recognition . . . . . . . . . . . . . . . . . . . . . . 40
speech synthesis . . . . . . . . . . . . . . . . . . . . . . . . 40
stopwords . . . . . . . . . . . . . . . . . . . . 17, 18, 33, 86
stopwords removal . . . . . . . . . . . . . . . . . . . . . . 59
strength . . . . . . . . . . . . . . . . . . . . . . . . . 25, 70, 85
strength distribution . . . . . . . . . . . . . . . . . . . . . 26
subnetwork level measures . . . . . . . . . . . . . . . 92
subword level . . . . . . . . . . . . . . . . . . . . . . . . . 174
subword level layer . . . . . . . . . . . . . . . . . . . . 182
subword level networks . . . . . . . . . . . . . . . . . 176
subword-level networks . . . . . . . . . . . . . 56, 171
summarization . . . . . . . . . . . . . . . . . . . . . . 75, 92
supervised learning . . . . . . . . . . . . . . . . . . . . . . 67
syllabification algorithm . . . . . . . . . . . . . . . . . 41
syllable layer . . . . . . . . . . . . . . . . . . . . . . . . . . 170
syllable network . 40, 41, 44, 57, 60, 170, 176,

179
syllables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



208 INDEX

syntax dependency tree . . . . . . . . . . . . 171, 175
syntax layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
syntax network . . . . . . . . 57, 60, 170, 175, 179

T

tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
term frequency-inverse document frequency67
text genre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
text preprocessing . . . . . . . . . . . . . . . . . . . . . . . 56
TextRank . . . . . . . . . . . . . . . . . . . . . . . . . . . 72, 84
TF-IDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
thesaurus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
topic trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
transitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
triad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
triad significance profile . . . . . . . . 49, 178, 183
tweets . . . . . . . . . . . . . . . . . . . . . . . . 77, 111, 120
Twitter . . . . . . . . . . . . . . . . . . . . . . . . . . . 111, 120

U

underlaying graph . . . . . . . . . . . . . . . . . . . . . .168
undirected network. . . .16, 24, 33, 40, 60, 115
Unicode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
unsupervised learning . . . . . . . . . . . . . . . . . . . 67
unweighted networks . . . . . . . . . . . . . . . . 40, 60
user influence . . . . . . . . . . . . . . . . . . . . . . . . . . 111

V

vector space model . . . . . . . . . . . . . . . . . . . . . . 67
vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56, 177
vocabulary size . . . . . . . . . . . . . . . . . . . . . . . . . 23

W

weighted Adamic-Adar . . . . . . . . . . . . . . . . . 121
weighted common neighbors . . . . . . . 114, 121
weighted Jaccard’s coefficient . . . . . . .114, 121
weighted networks . . . . 16, 24, 40, 60, 79, 115
weighted preferential attachment. . . . . . . . .121
weighted resource allocation index. . . . . . .122
Wikipedia . . . . . . . . . . . . . . . . 41, 138, 148, 149
Wikipedia corpus . . . . . . . . . . . . . . . . . . . . . . . 42
Wikipedia entry . . . . . . . . . . . . . . . . . . . 138, 148
word level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
word-ego network . . . . . . . . . . . . . . . . . . . . . . . 61
word-level layer . . . . . . . . . . . . . . . . . . . . . . . 182
word-level networks . . . . . . . 56, 171, 175, 179
word-list network . . . . . . . . . . . . . . . . . . . . . . . 61

word-tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Z

Z-score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49, 178
Zipf’s law. . . . . . . . . . . . . . . . . . . . . . . . . . .24, 26



ISBN 978-953-7720-34-6


	Part I — Language Networks Construction
	1 Preliminary Report on the Structure of Croatian Linguistic Co-occurrence Networks
	2 Complex Networks Measures for Differentiation between Normal and Shuffled Croatian Texts
	3 Comparison of Linguistic Networks Measures for Parallel Texts 
	4 A Preliminary Study of Croatian Language Syllable Networks
	5 Network Motifs Analysis of Croatian Literature
	6 LaNCoA: A Python Toolkit for Language Networks Construction and Analysis

	Part II — Applications
	7 An Overview of Graph-Based Keyword Extraction Methods and Approaches
	8 Network-based Keyword Extraction from Multitopic Web Documents 
	9 Toward Selectivity Based Keyword Extraction for Croatian News
	10 Comparison of the Language Networks from Literature and Blogs
	11 Revealing the Structure of Domain Specific Tweets via Complex Networks Analysis
	12 Link Prediction on Twitter
	13 Extracting Domain Knowledge by Complex Networks Analysis of Wikipedia Entries
	14 Comparing Network Centrality Measures as Tools for Identifying Key Concepts in Complex Networks: a Case of Wikipedia 

	Part III — Multilayered Language Model
	15 Towards a Formal Model of Language Networks
	16 Multilayer Network of Language: a Unified Framework for Structural Analysis of Linguistic Subsystems

	Part IV — Bibliography
	Index




