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Department of Informatics,

University of Rijeka,
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Abstract—In this paper we explore the relation between
different groups of tweets using complex network analysis and
link prediction. The tweets were collected via the Twitter API
depending on their textual content. That is, we searched for
the tweets in English language containing specific predefined
keywords from different domains. From the gathered tweets a
complex network of words was formed as a weighted network.
Nodes represent words and a link between two nodes exists if
these two words co-occur in the same tweet, while weight denotes
the co-occurrence frequency. The Twitter search was repeated
for four different search criteria (API queries based on different
tweet keywords), thus resulting in four networks with different
nodes and links. The resulting networks were subjects to further
network analysis, as comparison of numerical properties for
different networks and link prediction for individual networks.
This paper shows the tweet scraping process, our approach to
building the networks, the measures we calculated for them, the
differences and similarities between different networks we built
and our success in predicting future links.

I. INTRODUCTION

Twitter is a popular online social network created in 2006
that enables user to send publicly visible messages called
”tweets”. One of the main characteristics that distinguishes
Twitter from other online social networks is the limit on
tweet length. Twitter user are allowed to send tweets that
have a maximum of 140 characters. Hence, Twitter is often
categorized as a micro-blogging platform. It is estimated that
in 2015 Twitter had over half a billion users. [?]

Because of its popularity, user-base size and vast amounts
of tweets, Twitter has been studied in the context of person-to-
person relations [?], user influence [?], economic predictions
[?], predictions of political elections [?], conversational prac-
tices [?] and trends discovery [?].

Another important research domain related to Twitter is
sentiment analysis. In [?] Pak et al. automatically collect from
Twitter a corpus and perform linguistic analysis on it. Then
they build a sentiment classifier able to determine positive,
negative and neutral sentiments for a document. There has
been reported research in automatic classification of tweets
regarding their sentiment [?]. [?] gives a detailed revision of
the field of sentiment analysis with Twitter in focus. Research
by Agarwal et al. [?] examines sentiment analysis on Twitter
data. In it the authors introduce POS-specific prior polarity
features and explore the use of a tree kernel to eliminate the
need for laborious feature engineering. In [?] Kouloumpis et al.

investigate the utility of linguistic features for detecting tweets
sentiment using a supervised approach, while also leveraging
existing hashtags in building training data. Wang et al. [?]
present hashtag-level sentiment classification which aims to
automatically generate the overall sentiment polarity for a
given hashtag in a certain time period.

The following papers use the complex network analysis
approach to Twitter data. Villazon et al. in [?] look at Twitter
as a complex network, calculating the cluster coefficient,
power law and average path length for it. [?] presents a model
for describing the growth of scale-free networks. The model is
applied only after checking that Twitter is indeed a scale-free
network, and for that purpose the mentioned paper proposes a
new heuristic method of finding the upper bounds of the path
lengths instead of computing the exact length.

In our approach we use complex networks analysis to reveal
the structure of domain specific tweets. The motivation of our
research is to detect weather networks constructed from differ-
ent tweets domains have different structural properties. More
precisely, the goal of this research is to determine whether (and
which) complex network measures can distinguish between
networks of tweets with ”positive” and ”negative” aspects.
Possible applications of proposed approach can be in the
domain of sentiment analysis. Furthermore, link prediction en-
ables anticipation of positive or negative attitude propagation
on Twitter.

We collect positive tweets in English language using key-
words with positive polarity (e.g. joy, happiness, ...) and
negative tweets using keywords with negative polarity (e.g.
anger, fear, ...). Then we perform the global and local complex
network analysis where we compare results for four obtained
networks. On the global level we use a standard set of net-
work measures (e.g. diameter, average path length, clustering
coefficient). However, for the local level analysis we apply a
node selectivity measure encouraged by our previous findings
[?], [?], [?] for which we show that it is an important measure
for language networks analysis and differentiation.

In the second Section we present the network measures
used in our research. In the third Section we describe how we
construct the tweet networks. The results and discussion are
given in the fourth Section. Finally, the fifth Section contains
conclusions and directions for the further research.



II. NETWORKS MEASURES

Complex network is a graph with non-trivial topological
features (e.g. high clustering coefficient, low distances, heavy-
tailed degree distribution, etc.). It can be represented with a
graph G, defined as a pair of two sets G = (V,E); the first
set V consisting of vertices and the second set E consisting of
edges. N as the number of vertices in V and K as the number
of edges in E. In the domain of network analysis, the vertices
are referred as nodes and the edges are called links.

Network analysis can be classified by the following three
levels: macro-scale or global level, meso-scale level and micro-
scale or local level. In weighted complex networks every link
connecting two nodes u and v has an associated weight wuv .
A node degree is the number of links directly connected (or
incident) to that node. The set of nodes incident to a node
v is denoted as Γ(v). The number of network components is
represented by ω. Next, we present network measures that will
be used in the following sections.

The average network degree is the ratio of the number of
links to the number of nodes. For undirected networks we
multiply this ratio by 2 since undirected links always have
two incident nodes:

〈k〉 = 2
K

N
. (1)

Network strength is simply the sum of all link weights in a
network:

S =
∑

u,v∈V

wuv. (2)

For the average network strength we divide a networks
strength with its number of nodes:

〈s〉 =
S

N
. (3)

Node selectivity for a node v corresponds to the sum of
weights of all incident links divided by that nodes degree
(denoted as deg(v)):

e(v) =

∑
u∈Γ(v) wuv

deg(v)
. (4)

Average network selectivity is the sum of all individual node
selectivities divided by the number of nodes:

〈e〉 =

∑
v∈V e(v)

N
. (5)

Network density is represented as the ratio between the
number of existing links and the number of all possible links:

d =
K

N(N − 1)
. (6)

Average path length for a network, where duv denotes the
number of links lying on the shortest path between u, v ∈ V ,
is computed as following:

L =
∑
u,v

duv
N(N − 1)

. (7)

The network diameter represents the longest shortest path
in a network (u, v ∈ V ):

D = max(duv). (8)

The network radius denotes the shortest ε(v), where ε(v)
is defined as the maximum distance between v ∈ V and any
other node:

R = min(ε(v)). (9)

Network transitivity where possible triangles are identified
by the number of triads (two links with a shared node):

T = 3
#triangles

#triads
. (10)

Average clustering coefficient, where c(v) is the clustering
coefficient for a node v, sums all the individual clustering
coefficients and divides them by the number of nodes:

C =
1

N

∑
v∈V

c(v). (11)

The global network efficiency is the reciprocal value of a
networks average path length:

E =
1

L
. (12)

In the context of link prediction we use the following
measures.

Weighted Common Neighbors, adapted from [?], where
weights of links connecting u and v to their common neighbors
are summed:

CN(u, v) =
∑

z∈Γ(u)∩z∈Γ(v)

wuz + wvz. (13)

Weighted Jaccard’s Coefficient, adapted from [?], which
divides the weighted Common Neighbors value for u and v
by the summed weights of all links incident to u and/or v:

JC(u, v) =

∑
z∈Γ(u)∩z∈Γ(v) wuz + wvz∑
a∈Γ(u) wau +

∑
b∈Γ(v) wbv

. (14)

Lastly, we present the link prediction precision as the ratio
between the number of correctly predicted links and the total
number of predicted links. That is, we divide the number of
true positives (|TP |) by the number of true and false positives
(|TP |+ |FP |). [?]

Precision =
|TP |

|TP |+ |FP |
(15)



III. NETWORKS CONSTRUCTION

The first step in constructing networks is the collection of
data. Initially, we searched for four sets of tweets according to
the following criteria: a) tweets associated to recent immigrant
and war related events; b) tweets containing negatively polar-
ized words; c) tweets associated to house pets and d) tweets
containing positively polarized words. The subset of positive
and negative polarized words is extracted from the sentiment
lexicon in [?]. From now on we will refer to the networks
built from their respective sets as: a) emo-neta, b) emo-netb,
c) emo-netc and d) emo-netd.

For the data collection process we use Python in combina-
tion with the Python Twitter Tools package, which provides an
easy-to-use interface for the official Twitter API. In the API
request arguments we specified we are searching for a mix of
recent and popular tweets in the English language. We scraped
about 10000 tweets for each of four different queries, resulting
in a dataset of 39882 tweets. It is worth to mention that the
official Twitter API documentation states that the language
detection is based on the ”best-effort” principle [?].

In the text (tweets) preparation step first we eliminate
stopwords1, and from the remaining text we compute the
100 most frequent words for each of the four subsets. We
selected top 100 words as the reasonable list which provides
the best trade-off between computation time and link pre-
diction results. Note that the former computation was case-
insensitive and we used the list of English stopwords presented
at http://www.ranks.nl/stopwords.

From the words of preprocessed tweets extended with the
set of explicit keywords (e.g. joy, puppy) used for retrieving
each of the tweets we form the nodes of the networks. Link
between two nodes (words) is established if these two word
appear together in the same tweet. Weight on the link repre-
sents words co-occurrence frequencies, that is, the number of
tweets in which two high-frequency words from the top 100
list co-occurred. That makes the generated networks weighted
and undirected. Hence, based on the high-frequency words,
we generate four different networks for each of the four data
sets.

We build 16 distinct networks from four datasets: the first
network is built from 25% of the data, the second from 50%,
the third from 75% and the fourth from 100% of the data
in one dataset. We will denote those networks, respectively,
as emo-netx1 , emo-netx2 , emo-netx3 and emo-netx4 , where x ∈
{a, b, c, d}. That means we, as previously mentioned, generate
a total of 16 different networks, four per each dataset.

Some other used Python packages not previously mentioned
are NetworkX [?] and LaNCoA [?]. The first one is a popular
Python tool for creating and manipulating complex networks.
It also provides a rich collection of functions for studying
complex networks on various levels. The LaNCoA toolkit
provides procedures for construction and analysis of complex

1Stopwords are a list of the most common, short function words which
do not carry strong semantic properties, but are needed for the syntax of a
language (pronouns, prepositions, conjunctions, abbreviations, ...).

language networks.

IV. RESULTS

1) Global and local network measures: Here we present
the computed global and local network measures for emo-neta4 ,
emo-netb4, emo-netc4 and emo-netd4. Table ?? shows the calcu-
lated measures that were previously described in Section ??.

TABLE I
GLOBAL AND LOCAL NETWORK MEASURES

Measure emo-neta4 emo-netb4 emo-netc4 emo-netd4
N 101 101 103 104
K 3454 3958 2854 3848
〈k〉 68.396 78.3762 55.4175 74
〈s〉 1025.9406 830.505 747.0291 1310.25
〈e〉 29.4867 24.0104 42.9054 44.7693
d 0.684 0.7838 0.5433 0.7184
ω 1 1 1 1
L 1.316 1.2162 1.4582 1.2816
D 2 2 3 2
R 1 1 2 1
T 0.7965 0.875 0.7774 0.8595
C 0.0088 0.0208 0.0532 0.0077
A -0.1257 -0.0933 -0.0587 0.0442
E 0.7599 0.8222 0.6858 0.7803

The first visualization we present (Figure ??) is for the
node degrees across all emo-net4 networks. We see no major
differences for node degrees across those networks.

Fig. 1. Node degrees for all emo-net4 networks on a log-log scale

Lets recall that emo-neta4 and emo-netb4 were based on
data from queries with negative connotations. In contrast,
emo-netc4 and emo-netd4 were based on queries with positive
connotations. The most obvious difference between the first
two ”positive” and the last two ”negative” networks in Table ??
is 〈e〉, which represent the value of average network selectivity.
〈e〉 is notably lower for emo-neta4 and emo-netb4 than for
emo-netc4 and emo-netd4. Average network selectivity can be
interpreted as how ”heavy” the links across a network are. We
see how our positive networks have on average stronger ties
between nodes.



In Figure ?? we visualize the node selectivities for the
networks mentioned above. Note that the plot in Figure ??
uses a log-log scale.

Fig. 2. Node selectivities for all emo-net4 networks on a log-log scale

2) Link prediction: Next we present the results for the link
predictions. Here we computed the most likely future links for
emo-netx1 , emo-netx2 and emo-netx3 where x ∈ {a, b, c, d}. The
prediction were made using two measures: weighted Common
Neighbors (Table ??) and weighted Jaccard’s Coefficient (Ta-
ble ??). The definitions of both measures can be found in
Section ??.

We will briefly describe the link prediction process which
is the same for both measures. First compute the ranks for all
non-existing links in emo-netxi , x ∈ {a, b, c, d}, i ∈ {1, 2, 3}.
Generate the first set that contains the top n ranked non-
existing links in emo-netxi (n is the number of new links in
emo-netxi+1). Next, generate the second set that holds links
which appear in emo-netxi+1 but not in emo-netxi . Calculate
the prediction precision by looking at the intersection of the
first and second set.

TABLE II
PREDICTION PRECISION BASED ON THE WEIGHTED COMMON NEIGHBORS

MEASURE

Network emo-neta emo-netb emo-netc emo-netd

(25%) emo-net1 29.96% 45.92% 30.13% 26.84%
(50%) emo-net2 24.57% 34.88% 21.43% 17.73%
(75%) emo-net3 28.49% 27.49% 18.4% 13.45%

TABLE III
PREDICTION PRECISION BASED ON THE WEIGHTED JACCARD

COEFFICIENT MEASURE

Network emo-neta emo-netb emo-netc emo-netd

(25%) emo-net1 35.88% 47.96% 37.95% 50.26%
(50%) emo-net2 29.69% 37.72% 28.97% 41.14%
(75%) emo-net3 12.85% 32.16% 30.06% 32.75%

We see from Tables ?? and ?? that all predictions had
a precision rate above 10%, with some going as high as

50%. The predictions are, by a large margin, most precise for
emo-net1 networks. Generally, those networks will not have
all of the probable links already in them. With more data
all the probable links are added. In most cases the prediction
precision for networks with more links tends to fall. That is the
only obvious trend for precision rates across query domains,
network sizes and prediction measures.

V. CONCLUSION

In this paper we present how we construct multiple complex
networks based on four different data sets. Each data set
featured a collection of tweets gathered by predefined Twitter
API queries. Two of those queries retrieved ”negative” oriented
tweets, while the other two gathered ”positive” oriented tweets.
We investigate global and local network measures across four
query categories and compare them between ”negative” and
”positive” networks. In this paper we also predict future links
for networks across all query domains. For that purpose we use
networks built form a lower percentage of data and compare
them with networks built from a higher percentage of the same
data.

Regarding network measures, we found that the average
network selectivity is the only measure that discriminates
between ”negative” and ”positive” networks, favoring the
positive ones. This preliminary results indicate that selectivity
based network measures could be used in the Twitter sentiment
analysis tasks.

The link prediction process gave no obvious patterns, except
the higher prediction precision for networks built from the
smallest amount of data. Also, for all of our networks the link
prediction precision was above 10%. It should be noted that all
our results are preliminary and a more complex analysis would
be in order. Such analysis should primarily consider larger
and more diverse data sets. Expanding the list of computed
network measures would be also worth considering, along with
community detection algorithms.
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Free Networks: Application to Twitter,” Entropy, vol. 17, no. 8, pp.
58485867, Aug. 2015.
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